Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-21267596

ABSTRACT

The SARS-CoV-2 infections are still imposing a great public health challenge despite the recent developments in vaccines and therapy. Searching for diagnostic and prognostic methods that are fast, low-cost and accurate is essential for disease control and patient recovery. The MALDI-TOF mass spectrometry technique is rapid, low cost and accurate when compared to other MS methods, thus its use is already reported in the literature for various applications, including microorganism identification, diagnosis and prognosis of diseases. Here we developed a prognostic method for COVID-19 using the proteomic profile of saliva samples submitted to MALDI-TOF and machine learning algorithms to train models for COVID-19 severity assessment. We achieved an accuracy of 88.5%, specificity of 85% and sensitivity of 91.5% for classification between mild/moderate and severe conditions. Then, we tested the model performance in an independent dataset, we achieved an accuracy, sensitivity and specificity of 67.18, 52.17 and 75.60% respectively. Saliva is already reported to have high inter-sample variation; however, our results demonstrates that this approach has the potential to be a prognostic method for COVID-19. Additionally, the technology used is already available in several clinics, facilitating the implementation of the method. Further investigation using a bigger dataset is necessary to consolidate the technique.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-449284

ABSTRACT

Coronavirus disease-2019 (COVID-19) pandemic caused by the SARS-CoV-2 coronavirus infection is a major global public health concern affecting millions of people worldwide. The scientific community has joint efforts to provide effective and rapid solutions to this disease. Knowing the molecular, transmission and clinical features of this disease is of paramount importance to develop effective therapeutic and diagnostic tools. Here, we provide evidence that SARS-CoV-2 hijacks the glycosylation biosynthetic, ER-stress and UPR machineries for viral replication using a time-resolved (0-48 hours post infection, hpi) total, membrane as well as glycoproteome mapping and orthogonal validation. We found that SARS-CoV-2 induces ER stress and UPR is observed in Vero and Calu-3 cell lines with activation of the PERK-eIF2-ATF4-CHOP signaling pathway. ER-associated protein upregulation was detected in lung biopsies of COVID-19 patients and associated with survival. At later time points, cell death mechanisms are triggered. The data show that ER stress and UPR pathways are required for SARS-CoV-2 infection, therefore representing a potential target to develop/implement anti-CoVID-19 drugs.

SELECTION OF CITATIONS
SEARCH DETAIL
...