Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Parasit Vectors ; 15(1): 239, 2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35773725

ABSTRACT

BACKGROUND: Rhodnius robustus and Rhodnius pictipes are vectors of Trypanosoma cruzi, the etiologic agent of Chagas disease (CD), that are found in the Brazilian Amazon region. Susceptibility to infection and vector competence depend on the parasite-vector relationship. Our objective was to evaluate the interaction between T. cruzi and these two triatomine vectors in pure and mixed experimental infections of T. cruzi strains from the same or different geographic regions. METHODS: Fifth-instar nymphs of R. robustus and R. pictipes were fed on mice infected with four T. cruzi strains, namely genotypes TcIAM, TcIMG, TcIIPR, and TcIVAM, respectively, from the Brazilian states of Amazonas, Minas Gerais and Paraná. Over a period of 120 days, excreta were examined every 20 days to assess vector competence, and intestinal contents (IC) were examined every 30 days to determine susceptibility to infection. RESULTS: The highest positive rate in the fresh examination (%+FE, 30.0%), the highest number of parasitic forms (PF, n = 1969) and the highest metacyclogenesis rate (%MC, 53.8%) in the excreta were recorded for R. robustus/TcIVAM. Examination of the IC of R. pictipes revealed a higher number of PF in infections with TcIAM (22,680 PF) and TcIIPR (19,845 PF) alone or in association (17,145 PF), as well as a %+FE of 75.0% with TcII, in comparison with the other genotypes. The highest %MC (100%) was recorded for the mixed infections of TcIAM with TcIIPR or TcIVAM in the IC of R. pictipes. CONCLUSIONS: Overall, both species were found to be susceptible to the T. cruzi strains studied. Rhodnius robustus showed vector competence for genotypes TcIVAM and TcIAM+TcIVAM and R. pictipes for TcIAM+TcIVAM and TcIAM+TcIIPR; there was elimination of infective forms as early as at 20 days. Our results suggest that both the genetics of the parasite and its geographic origin influence the susceptibility to infection and vector competence, alone or in association.


Subject(s)
Chagas Disease , Kinetoplastida , Rhodnius , Triatominae , Trypanosoma cruzi , Trypanosomatina , Animals , Chagas Disease/parasitology , Mice , Rhodnius/parasitology , Triatominae/parasitology , Trypanosoma cruzi/genetics
2.
Exp Parasitol ; 232: 108197, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34863706

ABSTRACT

Vector competence of triatomines (kissing bugs) for Trypanosoma cruzi transmission depends on the parasite-vector interaction and the genetic constitution of both. This study evaluates the susceptibility and vector competence of Rhodnius robustus experimentally infected with T. cruzi IV (TcIV). Nymphs were fed on infected mice or an artificial feeder with blood containing culture-derived metacyclic trypomastigotes (CMT) or blood trypomastigotes (BT). The intestinal contents (IC) and excreta of the insects were examined by fresh examination and kDNA-PCR. The rate of metacyclogenesis was also determined by differential counts. Fifth instar nymphs fed with CMT ingested a greater blood volume (mean of 74.5 µL) and a greater amount of parasites (mean of 149,000 CMT/µL), and had higher positivity in the fresh examination of the IC. Third instar nymphs fed with CMT had higher positivity (33.3%) in the fresh examination of the excreta. On the 20th day after infection (dai), infective metacyclic trypomastigote (MT) forms were predominant in the excreta of 3/4 experimental groups, and on the 30th dai, the different parasitic forms were observed in the IC of all the groups. Higher percentages of MT were observed in the excreta of the 5th instar nymphs group (84.1%) and in the IC of the 3rd instar nymphs group (80.0%). Rhodnius robustus presented high susceptibility to infection since all nymphs were infected, regardless of the method used for blood meal, in addition these insects demonstrated vector competence for TcIV with high rates of metacyclogenesis being evident.


Subject(s)
Chagas Disease/transmission , Insect Vectors/parasitology , Rhodnius/parasitology , Trypanosoma cruzi/physiology , Animals , Humans , Mice , Nymph/parasitology , Polymerase Chain Reaction
3.
BMC Complement Med Ther ; 21(1): 77, 2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33632196

ABSTRACT

BACKGROUND: Trypanosoma cruzi is the etiological agent of Chagas disease (CD) or American trypanosomiasis, an important public health problem in Latin America. Benznidazole (BZ), a drug available for its treatment, has limited efficacy and significant side effects. Essential oils (EOs) have demonstrated trypanocidal activity and may constitute a therapeutic alternative. Our aim was to evaluate the efficacy of the EOs of clove (CEO - Syzygium aromaticum) and ginger (GEO - Zingiber officinale), administered alone and in combination with BZ, in Swiss mice infected with T. cruzi. METHODS: The animals were inoculated with 10,000 blood trypomastigotes of the Y strain of T. cruzi II by gavage and divided into four groups (n = 12 to 15): 1) untreated control (NT); 2) treated with BZ; 3) treated with CEO or GEO; and 4) treated with BZ + CEO or GEO. The treatments consisted of oral administration of 100 mg/kg/day, from the 5th day after parasite inoculation, for 20 consecutive days. All groups were submitted to fresh blood examination (FBE), blood culture (BC), conventional PCR (cPCR) and real-time PCR (qPCR), before and after immunosuppression with cyclophosphamide. RESULTS: Clove and ginger EOs, administered alone and in combination with BZ, promoted suppression of parasitemia (p < 0.0001), except for the animals treated with CEO alone, which presented a parasitemia curve similar to NT animals. However, there was a decrease in the BC positivity rate (p < 0.05) and parasite load (< 0.0001) in this group. Treatment with GEO alone, on the other hand, besides promoting a decrease in the BC positivity rate (p < 0.05) and parasite load (p < 0.01), this EO also resulted in a decrease in mortality rate (p < 0.05) of treated mice. CONCLUSIONS: Decreased parasite load, as detected by qPCR, was observed in all treatment groups (BZ, CEO, GEO and BZ + EOs), demonstrating benefits even in the absence of parasitological cure, thus opening perspectives for further studies.


Subject(s)
Antiprotozoal Agents/administration & dosage , Nitroimidazoles/administration & dosage , Oils, Volatile/administration & dosage , Plant Oils/administration & dosage , Syzygium/chemistry , Trypanosoma cruzi/drug effects , Zingiber officinale/chemistry , Animals , Chagas Disease/drug therapy , Chagas Disease/parasitology , Drug Therapy, Combination , Humans , Male , Mice , Parasite Load , Trypanosoma cruzi/genetics , Trypanosoma cruzi/growth & development , Trypanosoma cruzi/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...