Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Biomed Eng ; 71(3): 1056-1067, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37851549

ABSTRACT

OBJECTIVE: In this study, we present a novel biomimetic deep learning network for epileptic spasms and seizure prediction and compare its performance with state-of-the-art conventional machine learning models. METHODS: Our proposed model incorporates modular Volterra kernel convolutional networks and bidirectional recurrent networks in combination with the phase amplitude cross-frequency coupling features derived from scalp EEG. They are applied to the standard CHB-MIT dataset containing focal epilepsy episodes as well as two other datasets from the Montefiore Medical Center and the University of California Los Angeles that provide data of patients experiencing infantile spasm (IS) syndrome. RESULTS: Overall, in this study, the networks can produce accurate predictions (100%) and significant detection latencies (10 min). Furthermore, the biomimetic network outperforms conventional ones by producing no false positives. SIGNIFICANCE: Biomimetic neural networks utilize extensive knowledge about processing and learning in the electrical networks of the brain. Predicting seizures in adults can improve their quality of life. Epileptic spasms in infants are part of a particular seizure type that needs identifying when suspicious behaviors are noticed in babies. Predicting epileptic spasms within a given time frame (the prediction horizon) suggests their existence and allows an epileptologist to flag an EEG trace for future review.


Subject(s)
Deep Learning , Spasms, Infantile , Infant , Adult , Humans , Biomimetics , Quality of Life , Seizures/diagnosis , Electroencephalography , Spasm
2.
Brain Commun ; 2(2): fcaa182, 2020.
Article in English | MEDLINE | ID: mdl-33376988

ABSTRACT

Postictal generalized EEG suppression is the state of suppression of electrical activity at the end of a seizure. Prolongation of this state has been associated with increased risk of sudden unexpected death in epilepsy, making characterization of underlying electrical rhythmic activity during postictal suppression an important step in improving epilepsy treatment. Phase-amplitude coupling in EEG reflects cognitive coding within brain networks and some of those codes highlight epileptic activity; therefore, we hypothesized that there are distinct phase-amplitude coupling features in the postictal suppression state that can provide an improved estimate of this state in the context of patient risk for sudden unexpected death in epilepsy. We used both intracranial and scalp EEG data from eleven patients (six male, five female; age range 21-41 years) containing 25 seizures, to identify frequency dynamics, both in the ictal and postictal EEG suppression states. Cross-frequency coupling analysis identified that during seizures there was a gradual decrease of phase frequency in the coupling between delta (0.5-4 Hz) and gamma (30+ Hz), which was followed by an increased coupling between the phase of 0.5-1.5 Hz signal and amplitude of 30-50 Hz signal in the postictal state as compared to the pre-seizure baseline. This marker was consistent across patients. Then, using these postictal-specific features, an unsupervised state classifier-a hidden Markov model-was able to reliably classify four distinct states of seizure episodes, including a postictal suppression state. Furthermore, a connectome analysis of the postictal suppression states showed increased information flow within the network during postictal suppression states as compared to the pre-seizure baseline, suggesting enhanced network communication. When the same tools were applied to the EEG of an epilepsy patient who died unexpectedly, ictal coupling dynamics disappeared and postictal phase-amplitude coupling remained constant throughout. Overall, our findings suggest that there are active postictal networks, as defined through coupling dynamics that can be used to objectively classify the postictal suppression state; furthermore, in a case study of sudden unexpected death in epilepsy, the network does not show ictal-like phase-amplitude coupling features despite the presence of convulsive seizures, and instead demonstrates activity similar to postictal. The postictal suppression state is a period of elevated network activity as compared to the baseline activity which can provide key insights into the epileptic pathology.

SELECTION OF CITATIONS
SEARCH DETAIL
...