Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 571: 1253-61, 2016 Nov 15.
Article in English | MEDLINE | ID: mdl-27476729

ABSTRACT

Eggs of the Western spadefoot toad (Pelobates cultripes) reached a 100% mortality in all 29 clutches deposited at a pH below 5.0 in a temporary pond of the Doñana National Park (SW Spain) throughout the wet season of 2006-2007. A similar trend was detected in a neighbouring pond. The proximity of these two ponds to a groundwater pumping area (<1.5km), prompted us to elucidate the possible links between the reduction in pond hydroperiod over past decades (1989-2008) and the decrease of groundwater pH-buffering capacity. The average hydroperiod had decreased by 4months since 1998-99 in the pond where the extensive egg mortality had occurred. The total alkalinity, and the Mg(2+)concentration had also significantly declined in the shallow water-table since 1998-99, from an average of 8.56 to 0.32meql(-1), and of 3.57 to 1.15meql(-1), respectively. This decline of the shallow groundwater buffering capacity could turn this pond more susceptible to the inorganic acidity associated with pyrite oxidation as the sediment S content was often above 0.03%. The initial ratio of S/Ca+Mg in the summer dry sediment was a good predictor of pore-water pH on re-wetting after desiccation (r(2)=0.802, p<0.01). Therefore, this ratio can give some anticipation to mitigate the impact of acidity on toad hatching before these temporary ponds are reflooded on the next wet season. Our results suggest that the long-term damage to pond water levels can trigger a potential risk of soil acidification in the presence of iron-sulphide minerals.


Subject(s)
Anura/physiology , Groundwater/chemistry , Soil/chemistry , Wetlands , Animals , Hydrogen-Ion Concentration , Longevity , Ovum/physiology , Reproduction , Seasons , Spain
2.
Plant Biol (Stuttg) ; 15(6): 955-62, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23252890

ABSTRACT

During spring storms massive uprooting of Littorella uniflora occurred in a shallow Dutch softwater lake. The aim of this study was to test whether changes in plant morphology and sediment characteristics could explain the observed phenomenon. Uprooting was expected to occur in plants having a high shoot biomass and low root to shoot ratio (R:S), growing on sediments with a high organic matter content. Normally, uprooting of the relative buoyant L. uniflora is prevented by an extensive root system, expressed as a high R:S. This was studied by sampling floating and still rooted L. uniflora plants, as well as sediment and sediment pore water, along a gradient of increasing sediment organic matter content. Increasing organic matter content was related to increasing L. uniflora shoot biomass and consequently decreasing R:S. Furthermore, the results indicated that uprooting indeed occurred in plants growing on very organic sediments and was related to a low R:S. The increased shoot biomass on more organic sediments could be related to increased sediment pore water total inorganic carbon (TIC; mainly CO2 ) availability. Additionally, increased phosphorus availability could also have played a role. The disappearance of L. uniflora might lead to higher nutrient availability in the sediments. It is suggested that this could eventually promote the expansion of faster-growing macrophytes.


Subject(s)
Geologic Sediments/chemistry , Plantago/growth & development , Biomass , Carbon Dioxide/analysis , Carbon Dioxide/metabolism , Fresh Water/chemistry , Lakes/chemistry , Nitrogen/analysis , Nitrogen/metabolism , Phosphorus/analysis , Phosphorus/metabolism , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Plant Shoots/growth & development , Plant Shoots/metabolism , Plantago/metabolism
3.
Mar Pollut Bull ; 62(7): 1512-20, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21596394

ABSTRACT

In remote, tropical areas human influences increase, potentially threatening pristine seagrass systems. We aim (i) to provide a bench-mark for a near-pristine seagrass system in an archipelago in East Kalimantan, by quantifying a large spectrum of abiotic and biotic properties in seagrass meadows and (ii) to identify early warning indicators for river sediment and nutrient loading, by comparing the seagrass meadow properties over a gradient with varying river influence. Abiotic properties of water column, pore water and sediment were less suitable indicators for increased sediment and nutrient loading than seagrass properties. Seagrass meadows strongly responded to higher sediment and nutrient loads and proximity to the coast by decreasing seagrass cover, standing stock, number of seagrass species, changing species composition and shifts in tissue contents. Our study confirms that nutrient loads are more important than water nutrient concentrations. We identify seagrass system variables that are suitable indicators for sediment and nutrient loading, also in rapid survey scenarios with once-only measurements.


Subject(s)
Environmental Monitoring/methods , Geologic Sediments/chemistry , Rivers/chemistry , Water Pollutants, Chemical/analysis , Ammonia/analysis , Environment , Indonesia , Nitrogen/analysis , Phosphates/analysis , Poaceae , Tropical Climate , Wilderness
4.
Environ Pollut ; 120(3): 635-46, 2002.
Article in English | MEDLINE | ID: mdl-12442787

ABSTRACT

In recent decades sulphate concentrations in the ground water in many parts of The Netherlands have increased dramatically resulting in increased production of iron-(di)sulphides in sediments of ecosystems fed by this water. A sediment survey was carried out to study the potential sensitivity of wetlands to drought and subsequent acidification as a consequence of iron-(di)sulphide oxidation. Dessication led to severe acidification and mobilisation of heavy metals when the sediment S/(Ca + Mg) ratio exceeded 2/ 3. A total of 47% of the investigated locations contained S/(Ca + Mg) ratios higher than 2/3 and in 100, 75 and 50% of the locations mobilisation of Zn, Cd and Ni exceeded the Dutch signal value for ground water. Consistent with the sediment survey, lime addition experiments confirmed that increasing the buffer capacity, down to a S/(Ca + Mg) ratio 2/3, led to a drastic inhibition of the acidification and heavy metal percolation from dredged sediments. The performance of the same processes under drained field conditions demonstrates the relevance of these processes during dry summers.


Subject(s)
Disasters , Environmental Pollution , Geologic Sediments/chemistry , Metals, Heavy/chemistry , Cadmium , Calcium , Fresh Water , Hydrogen-Ion Concentration , Magnesium , Nickel , Sulfur , Zinc
SELECTION OF CITATIONS
SEARCH DETAIL
...