Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Genome Biol ; 22(1): 310, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34763716

ABSTRACT

A modified Chromium 10x droplet-based protocol that subsamples cells for both short-read and long-read (nanopore) sequencing together with a new computational pipeline (FLAMES) is developed to enable isoform discovery, splicing analysis, and mutation detection in single cells. We identify thousands of unannotated isoforms and find conserved functional modules that are enriched for alternative transcript usage in different cell types and species, including ribosome biogenesis and mRNA splicing. Analysis at the transcript level allows data integration with scATAC-seq on individual promoters, improved correlation with protein expression data, and linked mutations known to confer drug resistance to transcriptome heterogeneity.


Subject(s)
Nanopore Sequencing/methods , Protein Isoforms/genetics , Protein Isoforms/metabolism , Alternative Splicing , Animals , Exons , Gene Expression Profiling/methods , High-Throughput Nucleotide Sequencing , Humans , Mice , RNA Splicing , RNA, Messenger , Transcriptome
2.
Med ; 2(1): 49-73, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33575671

ABSTRACT

BACKGROUND: In about half of all patients with a suspected monogenic disease, genomic investigations fail to identify the diagnosis. A contributing factor is the difficulty with repetitive regions of the genome, such as those generated by segmental duplications. The ATAD3 locus is one such region, in which recessive deletions and dominant duplications have recently been reported to cause lethal perinatal mitochondrial diseases characterized by pontocerebellar hypoplasia or cardiomyopathy, respectively. METHODS: Whole exome, whole genome and long-read DNA sequencing techniques combined with studies of RNA and quantitative proteomics were used to investigate 17 subjects from 16 unrelated families with suspected mitochondrial disease. FINDINGS: We report six different de novo duplications in the ATAD3 gene locus causing a distinctive presentation including lethal perinatal cardiomyopathy, persistent hyperlactacidemia, and frequently corneal clouding or cataracts and encephalopathy. The recurrent 68 Kb ATAD3 duplications are identifiable from genome and exome sequencing but usually missed by microarrays. The ATAD3 duplications result in the formation of identical chimeric ATAD3A/ATAD3C proteins, altered ATAD3 complexes and a striking reduction in mitochondrial oxidative phosphorylation complex I and its activity in heart tissue. CONCLUSIONS: ATAD3 duplications appear to act in a dominant-negative manner and the de novo inheritance infers a low recurrence risk for families, unlike most pediatric mitochondrial diseases. More than 350 genes underlie mitochondrial diseases. In our experience the ATAD3 locus is now one of the five most common causes of nuclear-encoded pediatric mitochondrial disease but the repetitive nature of the locus means ATAD3 diagnoses may be frequently missed by current genomic strategies. FUNDING: Australian NHMRC, US Department of Defense, Japanese AMED and JSPS agencies, Australian Genomics Health Alliance and Australian Mito Foundation.


Subject(s)
Cardiomyopathies , Heart Failure , Mitochondrial Diseases , ATPases Associated with Diverse Cellular Activities/genetics , Australia , Child , Humans , Membrane Proteins/genetics , Mitochondrial Diseases/genetics , Mitochondrial Proteins/genetics , United States
3.
Ophthalmic Genet ; 41(2): 159-170, 2020 04.
Article in English | MEDLINE | ID: mdl-32281450

ABSTRACT

Background: Hydroxychloroquine retinal toxicity can occur in up to 7.5% of patients receiving treatment; however, possible genetic risk factors are poorly understood. The main objective of the study was to explore candidate genetic risk factors for retinal toxicity.Materials and Methods: Case-control study of patients with confirmed hydroxychloroquine retinal toxicity identified through ophthalmology departments of tertiary care hospitals and private ophthalmic practice in Australia. Participants were 26 Caucasian patients with hydroxychloroquine retinal toxicity who were matched with control subjects for age, gender, treatment duration and indication for hydroxychloroquine treatment. Participants underwent clinical examination, optical coherence tomographic scanning, automated field testing and whole exome sequencing of DNA extracted from saliva or blood. Outcome measures were grade of hydroxychloroquine toxicity and mutations in a panel of 40 candidate genes.Results: No susceptibility or protective factors were identified in either the cohort as a whole or any subset of patients.Conclusions and relevance: Further larger studies, with whole-exome analysis and consideration of additional modifying genes are needed.


Subject(s)
Antirheumatic Agents/adverse effects , Genetic Markers , Genetic Predisposition to Disease , Hydroxychloroquine/adverse effects , Polymorphism, Genetic , Retinal Diseases/pathology , Adult , Aged , Australia/epidemiology , Case-Control Studies , Female , Humans , Male , Middle Aged , Retinal Diseases/chemically induced , Retinal Diseases/epidemiology , Retinal Diseases/genetics , Risk Factors
4.
Nucleic Acids Res ; 47(8): e46, 2019 05 07.
Article in English | MEDLINE | ID: mdl-30793194

ABSTRACT

Systematic variation in the methylation of cytosines at CpG sites plays a critical role in early development of humans and other mammals. Of particular interest are regions of differential methylation between parental alleles, as these often dictate monoallelic gene expression, resulting in parent of origin specific control of the embryonic transcriptome and subsequent development, in a phenomenon known as genomic imprinting. Using long-read nanopore sequencing we show that, with an average genomic coverage of ∼10, it is possible to determine both the level of methylation of CpG sites and the haplotype from which each read arises. The long-read property is exploited to characterize, using novel methods, both methylation and haplotype for reads that have reduced basecalling precision compared to Sanger sequencing. We validate the analysis both through comparison of nanopore-derived methylation patterns with those from Reduced Representation Bisulfite Sequencing data and through comparison with previously reported data. Our analysis successfully identifies known imprinting control regions (ICRs) as well as some novel differentially methylated regions which, due to their proximity to hitherto unknown monoallelically expressed genes, may represent new ICRs.


Subject(s)
Genome , Genomic Imprinting , Genotyping Techniques , Haplotypes , Sequence Analysis, DNA/statistics & numerical data , Alleles , Animals , Chromosome Mapping , CpG Islands , DNA Methylation , Embryo, Mammalian/chemistry , Embryo, Mammalian/metabolism , Female , High-Throughput Nucleotide Sequencing , Male , Mice , Placenta/chemistry , Placenta/metabolism , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...