Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Front Endocrinol (Lausanne) ; 13: 881236, 2022.
Article in English | MEDLINE | ID: mdl-35669687

ABSTRACT

Obesity is mainly caused by excess energy intake and physical inactivity, and the number of overweight/obese individuals has been steadily increasing for decades. Previous studies showed that rodents fed westernized diets exhibit endocrine pancreas deterioration and a range of metabolic disorders. This study evaluated the effects of moderated aerobic treadmill exercise training on pancreatic islet cell viability and function in mice consuming a high-fat and sucrose diet. In the present study, 60-day-old male C57BL/6J mice were divided into four groups: control (C), fed a standard diet AIN-93M (3.83 kcal/g; 70% carbohydrate (cornstarch and dextrinized starch were chosen as the major source of carbohydrate for the AIN-93 diet. In addition, a small amount of sucrose), 20% protein (casein), and 10% fat (soybean) with no training (i.e., sedentary); C + training (CTR, fed the standard diet with eight weeks of exercise; high-fat diet + sucrose (HFDS), fed a high fat and sucrose diet (5.2 kcal/g; 20% carbohydrate (cornstarch and dextrinized starch were chosen as the major source of carbohydrate), 20% protein (casein), 60% fat (Lard was chosen as the major source of fat and a small amount of soybean) + 20% sucrose diluted in drinking water with no training; and HFDS + training (HFDSTR). After eight weeks, the HFDS mice displayed increased body weight (P<0.001) and epididymal, inguinal and retroperitoneal adipose tissue mass (P<0.01). These mice also presented insulin resistance (P<0.01), glucose intolerance (P<0.001), impaired glucose-stimulated insulin secretion (GSIS) and were less responsive to the physiological net ROS production induced by glucose stimulus. The HFDS group's pancreatic islet cells were 38% less viable and 59% more apoptotic than those from the C group (P<0.05). The HFDSTR improved glucose tolerance, body mass, insulin sensitivity and GSIS (P<0.05). Furthermore, HFDSTR mice had 53% more viable isolated pancreatic islets cells and 29% fewer apoptotic cells than the HFDS group (P<0.01). Thus, exercise training may slow down and/or prevent adverse metabolic effects associated with consuming a westernized diet.


Subject(s)
Insulin Resistance , Islets of Langerhans , Animals , Caseins/metabolism , Diet, High-Fat/adverse effects , Glucose/metabolism , Insulin/metabolism , Insulin Resistance/physiology , Islets of Langerhans/metabolism , Male , Mice , Mice, Inbred C57BL , Obesity/metabolism , Obesity/prevention & control , Starch , Sucrose/metabolism
2.
J Pineal Res ; 71(1): e12717, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33460489

ABSTRACT

The endocrine pancreas of pregnant rats shows evident plasticity, which allows the morphological structures to return to the nonpregnant state right after delivery. Furthermore, it is well-known the role of melatonin in the maintenance of the endocrine pancreas and its tropism. Studies indicate increasing nocturnal serum concentrations of maternal melatonin during pregnancy in both humans and rodents. The present study investigated the role of melatonin on energy metabolism and in pancreatic function and remodeling during pregnancy and early lactation in rats. The results confirm that the absence of melatonin during pregnancy impairs glucose metabolism. In addition, there is a dysregulation in insulin secretion at various stages of the development of pregnancy and an apparent failure in the glucose-stimulated insulin secretion during the lactation period, evidencing the role of melatonin on the regulation of insulin secretion. This mechanism seems not to be dependent on the antioxidant effect of melatonin and probably dependent on MT2 receptors. We also observed changes in the mechanisms of death and cell proliferation at the end of pregnancy and beginning of lactation, crucial periods for pancreatic remodeling. The present observations strongly suggest that both functionality and remodeling of the endocrine pancreas are impaired in the absence of melatonin and its adequate replacement, mimicking the physiological increase seen during pregnancy, is able to reverse some of the damage observed. Thus, we conclude that pineal melatonin is important to metabolic adaptation to pregnancy and both the functionality of the beta cells and the remodeling of the pancreas during pregnancy and early lactation, ensuring the return to nonpregnancy conditions.


Subject(s)
Insulin-Secreting Cells/metabolism , Lactation/metabolism , Melatonin/metabolism , Animals , Female , Glucose/metabolism , Insulin Secretion/physiology , Islets of Langerhans/metabolism , Pregnancy , Rats , Rats, Wistar
3.
Free Radic Biol Med ; 162: 1-13, 2021 01.
Article in English | MEDLINE | ID: mdl-33249137

ABSTRACT

Modern lifestyles, including lack of physical activity and poor nutritional habits, are driving the rapidly increasing prevalence of obesity and type 2 diabetes. Increased levels of free fatty acids (FFAs), particularly saturated FFAs, in obese individuals have been linked to pancreatic ß-cell failure. This process, termed lipotoxicity, involves activation of several stress responses, including ER stress and oxidative stress. However, the molecular underpinnings and causal relationships between the disparate stress responses remain unclear. Here we employed transgenic mice, expressing a genetically-encoded cytosolic H2O2 sensor, roGFP2-Orp1, to monitor dynamic changes in H2O2 levels in pancreatic islets in response to chronic palmitate exposure. We identified a transient increase in H2O2 levels from 4 to 8 h after palmitate addition, which was mirrored by a concomitant decrease in cellular NAD(P)H levels. Intriguingly, islets isolated from NOX2 knock-out mice displayed no H2O2 transient upon chronic palmitate treatment. Furthermore, NOX2 knockout rescued palmitate-dependent impairment of insulin secretion, calcium homeostasis and viability. Chemical inhibition of NOX activity protected islets from palmitate-induced impairment in insulin secretion, however had no detectable impact upon the induction of ER stress. In summary, our results reveal that transient NOX2-dependent H2O2 production is a likely cause of early palmitate-dependent lipotoxic effects.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Islets of Langerhans , Animals , Hydrogen Peroxide , Insulin , Mice , NADPH Oxidase 2/genetics , Palmitates/toxicity
4.
Naunyn Schmiedebergs Arch Pharmacol ; 394(4): 697-705, 2021 04.
Article in English | MEDLINE | ID: mdl-33128591

ABSTRACT

Lixisenatide, a glucagon-like peptide-1 receptor agonist, is used to stimulate insulin secretion in patients with type 2 diabetes mellitus. However, its effect on insulin secretion in cancer patients, particularly during the cachexia course, has not yet been evaluated. The purpose of this study was to investigate the lixisenatide effect on INS secretion decline during the cachexia course (2, 6, and 12 days of tumor) in pancreatic islets isolated from Walker-256 tumor-bearing rats. Pancreatic islets of healthy and tumor-bearing rats were incubated in the presence or absence of lixisenatide (10 nM). Tumor-bearing rats showed reduction of body weight and fat and muscle mass, characterizing the development of cachexia, as well as reduction of insulinemia and INS secretion stimulated by glucose (5.6, 8.3, 11.1, 16.7, and 20 mM) on days 2, 6, and/or 12 of tumor. Lixisenatide increased the 16.7 mM glucose-stimulated insulin secretion, but not by 5.6 mM glucose, in the islets of healthy rats, without changing the insulin intracellular content. However, lixisenatide did not prevent the decreased 16.7 mM glucose-stimulated insulin secretion in the pancreatic islets of rats with 2, 6, and 12 days of tumor and neither the decreased insulin intracellular content of rats with 12 days of tumor. In consistency, in vivo treatment with lixisenatide (50 µg kg-1, SC, once daily, for 6 days) visually increased insulinemia of healthy fasted rats, but did not prevent hypoinsulinemia of tumor-bearing rats. In conclusion, Walker-256 tumor-bearing rats showed early decline (2 days of tumor) of insulin secretion, which followed the cachexia course (6 and 12 days of tumor) and was not improved by lixisenatide, evidencing that this insulin secretagogue, used to treat type 2 diabetes, does not have beneficial effect in cancer bearing-rats.


Subject(s)
Cachexia/drug therapy , Hypoglycemic Agents/therapeutic use , Insulin Secretion/drug effects , Neoplasms/drug therapy , Peptides/therapeutic use , Animals , Cachexia/metabolism , Insulin/blood , Insulin/metabolism , Male , Neoplasms/metabolism , Rats, Wistar
5.
Nutrients ; 12(4)2020 Apr 09.
Article in English | MEDLINE | ID: mdl-32283715

ABSTRACT

Fasting is known to cause physiological changes in the endocrine pancreas, including decreased insulin secretion and increased reactive oxygen species (ROS) production. However, there is no consensus about the long-term effects of intermittent fasting (IF), which can involve up to 24 hours of fasting interspersed with normal feeding days. In the present study, we analyzed the effects of alternate-day IF for 12 weeks in a developing and healthy organism. Female 30-day-old Wistar rats were randomly divided into two groups: control, with free access to standard rodent chow; and IF, subjected to 24-hour fasts intercalated with 24-hours of free access to the same chow. Alternate-day IF decreased weight gain and food intake. Surprisingly, IF also elevated plasma insulin concentrations, both at baseline and after glucose administration collected during oGTT. After 12 weeks of dietary intervention, pancreatic islets displayed increased ROS production and apoptosis. Despite their lower body weight, IF animals had increased fat reserves and decreased muscle mass. Taken together, these findings suggest that alternate-day IF promote ß -cell dysfunction, especially in developing animals. More long-term research is necessary to define the best IF protocol to reduce side effects.


Subject(s)
Adipose Tissue/metabolism , Eating , Fasting/adverse effects , Islets of Langerhans/metabolism , Islets of Langerhans/pathology , Weight Loss , Adipose Tissue/pathology , Animals , Apoptosis , Fasting/physiology , Female , Insulin/blood , Insulin Secretion , Muscles/metabolism , Muscles/pathology , Rats, Wistar , Reactive Oxygen Species/metabolism , Time Factors
6.
Endocrine ; 68(2): 287-295, 2020 05.
Article in English | MEDLINE | ID: mdl-31997150

ABSTRACT

PURPOSE: Diabetes mellitus (DM) has a multifactorial etiology that imparts a particular challenge to effective pharmacotherapy. Thyroid hormone actions have demonstrated beneficial effects in diabetic as well as obese rats. In both conditions, inflammation status plays a crucial role in the development of insulin resistance. Taking this into consideration, the present study aimed to demonstrate another possible pathway of thyroid hormone action on insulin sensitivity in a spontaneous type 2 diabetic rat model: the Goto-Kakizaki (GK) rats. GK animals present all typical hallmarks of type 2 DM (T2DM), except the usual peripheric inflammatory condition, observed in the other T2DM animal models. METHODS: GK rats were treated or not with 3,5,3'triiodothyronine (T3). Insulin sensitivity, glucose tolerance, and proteins related to glucose uptake and utilization were evaluated in the skeletal muscle, white adipose tissue, and liver. RESULTS: GK rats T3-treated presented enhanced insulin sensitivity, increased GLUT-4 content in the white adipose tissue and skeletal muscle, and increased hexokinase and citrate synthase content in skeletal muscle. Both non-treated and T3-treated GK rats did not present alterations in cytokine content in white adipose tissue, skeletal muscle, liver, and serum. CONCLUSIONS: These results indicate that T3 improves insulin sensitivity in diabetic rats by a novel inflammatory-independent mechanism.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Insulin Resistance , Animals , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Insulin , Muscle, Skeletal , Rats , Triiodothyronine
SELECTION OF CITATIONS
SEARCH DETAIL
...