Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Psychiatry Res Neuroimaging ; 340: 111766, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38408419

ABSTRACT

BACKGROUND: Bipolar disorder (BD) and schizophrenia (SCZ) may exhibit functional abnormalities in several brain areas, including the medial temporal and prefrontal cortex and hippocampus; however, a less explored topic is how brain connectivity is linked to premorbid trauma experiences and clinical features in non-Caucasian samples of SCZ and BD. METHODS: Sixty-two individuals with SCZ (n = 20), BD (n = 21), and healthy controls (HC, n = 21) from indigenous and African ethnicity were submitted to clinical screening (Di-PAD), traumata experiences (ETISR-SF), cognitive and functional MRI assessment. The item psychosis/hallucinations in SCZ patients showed a negative correlation with the global efficiency (GE) in the right dorsal attention network. The items mania, irritable mood, and racing thoughts in the Di-PAD scale had a significant negative correlation with the GE in the parietal right default mode network. CONCLUSIONS: Differences in the activation of specific networks were associated with earlier disease onset, history of physical abuse, and more severe psychotic and mood symptoms in SCZ and BD subjects of indigenous and black ethnicity. Findings provide further evidence on SZ and BD's brain connectivity disturbances, and their clinical significance, in non-Caucasian samples.


Subject(s)
Bipolar Disorder , Psychotic Disorders , Schizophrenia , Humans , Schizophrenia/diagnostic imaging , Magnetic Resonance Imaging , Psychotic Disorders/psychology , Brain/diagnostic imaging
2.
Mol Neurobiol ; 60(7): 3650-3663, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36917419

ABSTRACT

Schizophrenia is a mental disorder with sex bias in disease onset and symptom severity. Recently, it was observed that females present more severe symptoms in the perimenstrual phase of the menstrual cycle. The administration of estrogen also alleviates schizophrenia symptoms. Despite this, little is known about symptom fluctuation over the menstrual cycle and the underlying mechanisms. To address this issue, we worked with the two-hit schizophrenia animal model induced by neonatal exposure to a virus-like particle, Poly I:C, associated with peripubertal unpredictable stress exposure. Prepulse inhibition of the startle reflex (PPI) in male and female mice was considered analogous to human schizophrenia-like behavior. Female mice were studied in the proestrus (high-estrogen estrous cycle phase) and diestrus (low-estrogen phase). Additionally, we evaluated the hippocampal mRNA expression of estrogen synthesis proteins; TSPO and aromatase; and estrogen receptors ERα, ERß, and GPER. We also collected peripheral blood mononuclear cells (PBMCs) from male and female patients with schizophrenia and converted them to induced microglia-like cells (iMGs) to evaluate the expression of GPER. We observed raised hippocampal expression of GPER in two-hit female mice at the proestrus phase without PPI deficits and higher levels of proteins related to estrogen synthesis, TSPO, and aromatase. In contrast, two-hit adult males with PPI deficits presented lower hippocampal mRNA expression of TSPO, aromatase, and GPER. iMGs from male and female patients with schizophrenia showed lower mRNA expression of GPER than controls. Therefore, our results suggest that GPER alterations constitute an underlying mechanism for sex influence in schizophrenia.


Subject(s)
Receptors, Estrogen , Schizophrenia , Adult , Humans , Male , Female , Animals , Mice , Receptors, Estrogen/metabolism , Estrogen Receptor alpha/metabolism , Aromatase/metabolism , Leukocytes, Mononuclear/metabolism , Receptors, G-Protein-Coupled/metabolism , Estrogens/pharmacology , RNA, Messenger , GTP-Binding Proteins/metabolism , Receptors, GABA/metabolism
3.
Braz. J. Psychiatry (São Paulo, 1999, Impr.) ; 44(6): 635-638, Nov.-Dec. 2022. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1420517

ABSTRACT

Objective: Clozapine is a second-generation antipsychotic indicated for treatment-resistant schizophrenia. Studies in several countries have shown a low rate of clozapine use despite the fact that approximately 30% of schizophrenia cases are treatment-resistant. In Brazil, few studies have addressed the frequency and variety of antipsychotic use in individuals diagnosed with schizophrenia (ICD F20). The objective of this study was to measure the rates of clozapine use in this population in the last decade using Brazilian Ministry of Health data. Methods: Prescriptions made between 2010 and 2020 in all 26 states and the Federal District registered at the Outpatient Information System Database from the Brazilian Health System (SIASUS) were evaluated. Results: A total of 25,143,524 prescriptions were recorded in this period, with clozapine representing 8.86% of all antipsychotics. The most frequently prescribed antipsychotic for patients with schizophrenia was olanzapine (35.8%), followed by quetiapine (27.5%). From 2010 to 2020, the rate of clozapine prescriptions in Brazil increased from 7.2% to 10.9%. Conclusions: Despite a slight increase in prescriptions in the last decade, clozapine is still underutilized in Brazil.

4.
Braz J Psychiatry ; 44(6): 635-638, 2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36327429

ABSTRACT

OBJECTIVE: Clozapine is a second-generation antipsychotic indicated for treatment-resistant schizophrenia. Studies in several countries have shown a low rate of clozapine use despite the fact that approximately 30% of schizophrenia cases are treatment-resistant. In Brazil, few studies have addressed the frequency and variety of antipsychotic use in individuals diagnosed with schizophrenia (ICD F20). The objective of this study was to measure the rates of clozapine use in this population in the last decade using Brazilian Ministry of Health data. METHODS: Prescriptions made between 2010 and 2020 in all 26 states and the Federal District registered at the Outpatient Information System Database from the Brazilian Health System (SIASUS) were evaluated. RESULTS: A total of 25,143,524 prescriptions were recorded in this period, with clozapine representing 8.86% of all antipsychotics. The most frequently prescribed antipsychotic for patients with schizophrenia was olanzapine (35.8%), followed by quetiapine (27.5%). From 2010 to 2020, the rate of clozapine prescriptions in Brazil increased from 7.2% to 10.9%. CONCLUSIONS: Despite a slight increase in prescriptions in the last decade, clozapine is still underutilized in Brazil.


Subject(s)
Antipsychotic Agents , Clozapine , Humans , Clozapine/therapeutic use , Antipsychotic Agents/therapeutic use , Brazil/epidemiology , Benzodiazepines , Quetiapine Fumarate , Prescriptions
5.
Neuroimmunomodulation ; 29(4): 391-401, 2022.
Article in English | MEDLINE | ID: mdl-35272296

ABSTRACT

INTRODUCTION: The prenatal/perinatal exposure to infections may trigger neurodevelopmental alterations that lead to neuropsychiatric disorders such as autism spectrum disorder (ASD). Previous evidence points to long-term behavioral consequences, such as autistic-like behaviors in rodents induced by lipopolysaccharide (LPS) pre- and postnatal (PN) exposure during critical neurodevelopmental periods. Additionally, sex influences the prevalence and symptoms of ASD. Despite this, the mechanisms underlying this influence are poorly understood. We aim to study sex influences in behavioral and neurotrophic/inflammatory alterations triggered by LPS neonatal exposure in juvenile mice at an approximate age of ASD diagnosis in humans. METHODS: Swiss male and female mice on PN days 5 and 7 received a single daily injection of 500 µg/kg LPS from Escherichia coli or sterile saline (control group). We conducted behavioral determinations of locomotor activity, repetitive behavior, anxiety-like behavior, social interaction, and working memory in animals on PN25 (equivalent to 3-5 years old of the human). To determine BDNF levels in the prefrontal cortex and hippocampus, we used animals on PN8 (equivalent to a human term infant) and PN25. In addition, we evaluated iba-1 (microglia marker), TNFα, and parvalbumin expression on PN25. RESULTS: Male juvenile mice presented repetitive behavior, anxiety, and working memory deficits. Females showed social impairment and working memory deficits. In the neurochemical analysis, we detected lower BDNF levels in brain areas of female mice that were more evident in juvenile mice. Only LPS-challenged females presented a marked hippocampal expression of the microglial activation marker, iba-1, and increased TNFα levels, accompanied by a lower parvalbumin expression. DISCUSSION/CONCLUSION: Male and female mice presented distinct behavioral alterations. However, LPS-challenged juvenile females showed the most prominent neurobiological alterations related to autism, such as increased microglial activation and parvalbumin impairment. Since these sex-sensitive alterations seem to be age-dependent, a better understanding of changes induced by the exposure to specific risk factors throughout life represents essential targets for developing strategies for autism prevention and precision therapy.


Subject(s)
Autism Spectrum Disorder , Behavior, Animal , Animals , Female , Male , Mice , Pregnancy , Autism Spectrum Disorder/immunology , Autism Spectrum Disorder/physiopathology , Behavior, Animal/physiology , Brain-Derived Neurotrophic Factor/metabolism , Disease Models, Animal , Lipopolysaccharides/toxicity , Memory Disorders/immunology , Memory Disorders/physiopathology , Parvalbumins/biosynthesis , Tumor Necrosis Factor-alpha , Nervous System Diseases/immunology , Nervous System Diseases/physiopathology , Microglia/immunology , Sex Factors , Age Factors
6.
Metab Brain Dis ; 36(8): 2283-2297, 2021 12.
Article in English | MEDLINE | ID: mdl-34491479

ABSTRACT

The current drug therapy for schizophrenia effectively treats acute psychosis and its recurrence; however, this mental disorder's cognitive and negative symptoms are still poorly controlled. Antipsychotics present important side effects, such as weight gain and extrapyramidal effects. The essential oil of Alpinia zerumbet (EOAZ) leaves presents potential antipsychotic properties that need further preclinical investigation. Here, we determined EAOZ effects in preventing and reversing schizophrenia-like symptoms (positive, negative, and cognitive) induced by ketamine (KET) repeated administration in mice and putative neurobiological mechanisms related to this effect. We conducted the behavioral evaluations of prepulse inhibition of the startle reflex (PPI), social interaction, and working memory (Y-maze task), and verified antioxidant (GSH, nitrite levels), anti-inflammatory [interleukin (IL)-6], and neurotrophic [brain-derived neurotrophic factor (BDNF)] effects of this oil in hippocampal tissue. The atypical antipsychotic olanzapine (OLZ) was used as standard drug therapy. EOAZ, similarly to OLZ, prevented and reversed most KET-induced schizophrenia-like behavioral alterations, i.e., sensorimotor gating deficits and social impairment. EOAZ had a modest effect on the prevention of KET-associated working memory deficit. Compared to OLZ, EOAZ showed a more favorable side effects profile, inducing less cataleptic and weight gain changes. EOAZ efficiently protected the hippocampus against KET-induced oxidative imbalance, IL-6 increments, and BDNF impairment. In conclusion, our data add more mechanistic evidence for the anti-schizophrenia effects of EOAZ, based on its antioxidant, anti-inflammatory, and BDNF up-regulating actions. The absence of significant side effects observed in current antipsychotic drug therapy seems to be an essential benefit of the oil.


Subject(s)
Alpinia , Antipsychotic Agents , Oils, Volatile , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antipsychotic Agents/pharmacology , Antipsychotic Agents/therapeutic use , Brain-Derived Neurotrophic Factor , Mice , Oils, Volatile/pharmacology , Oils, Volatile/therapeutic use , Olanzapine
7.
Article in English | MEDLINE | ID: mdl-33984421

ABSTRACT

Schizophrenia is a severe mental disorder with complex etiopathogenesis. Based on its neurodevelopmental features, an animal model induced by "two-hit" based on perinatal immune activation followed by peripubertal unpredictable stress was proposed. Sex influences the immune response, and concerning schizophrenia, it impacts the age of onset and symptoms severity. The neurobiological mechanisms underlying the influence of sex in schizophrenia is poorly understood. Our study aimed to evaluate sex influence on proinflammatory and oxidant alterations in male and female mice exposed to the two-hit model of schizophrenia, and its prevention by candesartan, an angiotensin II type 1 receptor (AT1R) blocker with neuroprotective properties. The two-hit model induced schizophrenia-like behavioral changes in animals of both sexes. Hippocampal microglial activation alongside the increased expression of NF-κB, and proinflammatory cytokines, namely interleukin (IL)-1ß and TNF-α, were observed in male animals. Conversely, females presented increased hippocampal and plasma levels of nitrite and plasma lipid peroxidation. Peripubertal administration of low-dose candesartan (0.3 mg/kg PO) prevented behavioral, hippocampal, and systemic changes in male and female mice. While these results indicate the influence of sex on inflammatory and oxidative changes induced by the two-hit model, candesartan was effective in both males and females. The present study advances the neurobiological mechanisms underlying sex influence in schizophrenia and opens new avenues to prevent this devasting mental disorder.


Subject(s)
Angiotensin II Type 1 Receptor Blockers/administration & dosage , Benzimidazoles/administration & dosage , Biphenyl Compounds/administration & dosage , Neuroprotective Agents , Receptor, Angiotensin, Type 1 , Schizophrenia/chemically induced , Tetrazoles/administration & dosage , Animals , Disease Models, Animal , Female , Hippocampus/drug effects , Interleukin-1beta/metabolism , Lipid Peroxidation , Male , Mice , Poly I-C , Pregnancy , Receptor, Angiotensin, Type 1/drug effects , Sex Factors , Tumor Necrosis Factor-alpha/metabolism
8.
Eur J Pharmacol ; 897: 173949, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33607108

ABSTRACT

Schizophrenia is a devastating neurodevelopmental disorder. The animal model based on perinatal immune activation, as first-hit, combined with peripubertal stress, as a second hit, has gained evidence in recent years. Omega-3 polyunsaturated fatty acids (n3-PUFAs) is being a promise for schizophrenia prevention. Nevertheless, the influence of sex in schizophrenia neurobiology and prevention has been neglected. Thus, the present study evaluates the preventive effects of n3-PUFAs in both sexes' mice submitted to the two-hit model and the participation of oxidative changes in this mechanism. The two-hit consisted of polyI:C administration from postnatal days (PNs) 5-7, and unpredictable stress from PNs35-43. n3-PUFAs were administered from PNs30-60. Prepulse inhibition of the startle reflex (PPI), social interaction, and Y-maze tests were conducted between PNs70-72 to evaluate positive-, negative-, and cognitive-like schizophrenia symptoms. We assessed brain oxidative changes in brain areas and plasma. Both sexes' two-hit mice presented deficits in PPI, social interaction, and working memory that were prevented by n3-PUFAs. In two-hit females, n3-PUFAs prevented increments in nitrite levels in the prefrontal cortex (PFC), hippocampus, striatum, and plasma TBARS levels. In two-hit males, n3-PUFAs prevented the increase in TBARS in the PFC, hippocampus, and striatum. Notably, male mice that received only n3-PUFAs without hit exposure presented impairments in working memory and social interaction. These results add further preclinical evidence for n3-PUFAs as an accessible and effective alternative in preventing behavioral and oxidative changes related to schizophrenia but call attention to the need for precaution in this indication due to hit- and sex-sensitive issues.


Subject(s)
Antioxidants/pharmacology , Behavior, Animal/drug effects , Brain/drug effects , Fatty Acids, Omega-3/pharmacology , Oxidative Stress/drug effects , Schizophrenia/prevention & control , Schizophrenic Psychology , Age Factors , Animals , Brain/metabolism , Brain/physiopathology , Dietary Supplements , Disease Models, Animal , Female , Male , Maze Learning/drug effects , Mice , Poly I-C , Prepulse Inhibition/drug effects , Reflex, Startle/drug effects , Schizophrenia/etiology , Schizophrenia/metabolism , Schizophrenia/physiopathology , Sex Factors , Sexual Development , Social Behavior , Stress, Psychological/complications
9.
J Psychopharmacol ; 34(1): 125-136, 2020 01.
Article in English | MEDLINE | ID: mdl-31556775

ABSTRACT

BACKGROUND: Schizophrenia (SCZ) is a neurodevelopmental disorder influenced by patient sex. Mechanisms underlying sex differences in SCZ remain unknown. A two-hit model of SCZ combines the exposure to perinatal infection (first-hit) with peripubertal unpredictable stress (PUS, second-hit). N-acetylcysteine (NAC) has been tested in SCZ because of the involvement of glutathione mechanisms in its neurobiology. AIMS: We aim to investigate whether NAC administration to peripubertal rats of both sexes could prevent behavioral and neurochemical changes induced by the two-hit model. METHODS: Wistar rats were exposed to polyinosinic:polycytidylic acid (a viral mimetic) or saline on postnatal days (PND) 5-7. On PND30-59 they received saline or NAC 220 mg/kg and between PND40-48 were subjected to PUS or left undisturbed. On PND60 behavioral and oxidative alterations were evaluated in the prefrontal cortex (PFC) and striatum. Mechanisms of hippocampal memory regulation such as immune expression of G protein-coupled estrogen receptor 1 (GPER), α7-nAChR and parvalbumin were also evaluated. RESULTS: NAC prevented sensorimotor gating deficits only in females, while it prevented alterations in social interaction, working memory and locomotor activity in both sexes. Again, in rats of both sexes, NAC prevented the following neurochemical alterations: glutathione (GSH) and nitrite levels in the PFC and lipid peroxidation in the PFC and striatum. Striatal oxidative alterations in GSH and nitrite were observed in females and prevented by NAC. Two-hit induced hippocampal alterations in females, namely expression of GPER-1, α7-nAChR and parvalbumin, were prevented by NAC. CONCLUSION: Our results highlights the influences of sex in NAC preventive effects in rats exposed to a two-hit schizophrenia model.


Subject(s)
Acetylcysteine/pharmacology , Schizophrenia/prevention & control , Sex Characteristics , Age Factors , Animals , Corpus Striatum/metabolism , Female , Glutathione/metabolism , Hippocampus/metabolism , Lipid Peroxidation , Locomotion/drug effects , Male , Memory, Short-Term/drug effects , Nitrites/metabolism , Parvalbumins/biosynthesis , Poly I-C , Prefrontal Cortex/metabolism , Rats , Receptors, G-Protein-Coupled/biosynthesis , Schizophrenia/chemically induced , Schizophrenia/complications , Sensory Gating/drug effects , Social Interaction/drug effects , Stress, Psychological/complications , alpha7 Nicotinic Acetylcholine Receptor/biosynthesis
10.
Behav Brain Res ; 372: 111975, 2019 10 17.
Article in English | MEDLINE | ID: mdl-31136774

ABSTRACT

In 2011, it was reviewed that a) there is a strong co-occurrence between major depression and chronic fatigue syndrome (CFS), with fatigue and physio-somatic symptoms being key symptoms of depression, and depressive symptoms appearing during the course of CFS; and b) the comorbidity between both disorders may in part be explained by activated immune-inflammatory pathways, including increased translocation of Gram-negative bacteria and increased levels of pro-inflammatory cytokines, such as interleukin (IL)-1. Nevertheless, the possible involvement of activated microglia in this comorbidity has remained unclear. This paper aims to review microglial disturbances in major depression, CFS and their comorbidity. A comprehensive literature search was conducted using the PubMed / MEDLINE database to identify studies, which are relevant to this current review. Depressed patients present neuroinflammatory alterations, probably related to microglial activation, while animal models show that a microglial response to immune challenges including lipopolysaccharides is accompanied by depressive-like behaviors. Recent evidence from preclinical studies indicates that activated microglia have a key role in the onset of fatigue. In chronic inflammatory conditions, such as infections and senescence, microglia orchestrate an inflammatory microenvironment thereby causing fatigue. In conclusion, based on our review we may posit that shared immune-inflammatory pathways and especially activated microglia underpin comorbid depression and CFS. As such, microglial activation and neuro-inflammation may be promising targets to treat the overlapping manifestations of both depression and CFS.


Subject(s)
Depression/metabolism , Fatigue Syndrome, Chronic/metabolism , Microglia/metabolism , Animals , Chronic Disease , Comorbidity , Cytokines/metabolism , Depression/physiopathology , Depressive Disorder, Major/metabolism , Depressive Disorder, Major/physiopathology , Fatigue Syndrome, Chronic/physiopathology , Humans , Inflammation/metabolism , Interleukin-1/metabolism , Microglia/physiology , Oxidative Stress/physiology
11.
Article in English | MEDLINE | ID: mdl-30508574

ABSTRACT

The viral mimetic polyinosinic:polycytidylic acid (poly I:C) is an important tool to study the consequences of viral infection to the development of neuropsychiatric disorders. Here, based on the premise of omega-3 polyunsaturated fatty acids (n3 PUFAs) as supplemental treatment to antipsychotics in schizophrenia, we investigated the involvement of NFkB pathway in the effects of n3 PUFAs or of the atypical antipsychotic clozapine in hippocampal poly I:C-challenged neurons. Primary hippocampal neuronal cultures were exposed to n3 PUFAs (DHA4.35 µM/EPA7.10 µM, DHA 8.7 µM/EPA14.21 µM or DHA17.4 µM/EPA28.42 µM) or clozapine (1.5 or 3 µM) in the presence or absence of poly I:C. MTT assay revealed that poly I:C-induced reduction in cell viability was prevented by n3 PUFAs or clozapine. N3 PUFAs (DHA 8.7 µM/EPA14.21 µM) or clozapine (3 µM) significantly reduced poly I:C-induced increase in iNOS, NFkB (p50/p65), IL-6 and nitrite when compared to non-treated cells. Only n3 PUFAs prevented poly I:C-induced deficits in BDNF. On the other hand, poly I:C caused a marked reduction in DCX immunoexpression, which was prevented only by clozapine. Thus, n3 PUFAs and clozapine exert in vitro neuroprotective effects against poly I:C immune challenge in hippocampal neurons, by mechanisms possibly involving the inhibition of canonical NFkB pathway. The present study adds further evidences to the mechanisms underlying n3 PUFAs and clozapine neuroprotective effects against viral immune challenges. Since n3 PUFAs is a safe strategy for use during pregnancy, our results also add further evidence for the use of this supplement in order to prevent alterations induced by viral hits during this developmental period.


Subject(s)
Clozapine/pharmacology , Fatty Acids, Omega-3/pharmacology , Hippocampus/drug effects , Inflammation/therapy , Neurons/drug effects , Neuroprotective Agents/pharmacology , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cell Survival/drug effects , Cells, Cultured , Doublecortin Protein , Hippocampus/metabolism , Inflammation/metabolism , Mice , Neurons/metabolism , Poly I-C
12.
J Neuroimmunol ; 320: 133-142, 2018 07 15.
Article in English | MEDLINE | ID: mdl-29681406

ABSTRACT

Peripheral inflammation induced by lipopolysaccharide (LPS) causes a behavioral syndrome with translational relevance for depression. This mental disorder is twice more frequent among women. Despite this, the majority of experimental studies investigating the neurobiological effects of inflammatory models of depression have been performed in males. Here, we sought to determine sex influences in behavioral and oxidative changes in brain regions implicated in the pathophysiology of mood disorders (hypothalamus, hippocampus and prefrontal cortex - PFC) in adult mice 24 h post LPS challenge. Myeloperoxidase (MPO) activity and interleukin (IL)-1ß levels were measured as parameters of active inflammation, while reduced glutathione (GSH) and lipid peroxidation as parameters of oxidative imbalance. We observed that male mice presented behavioral despair, while females anxiety-like alterations. Both sexes were vulnerable to LPS-induced anhedonia. Both sexes presented increased MPO activity in the PFC, while male only in the hippocampus. IL-1ß increased in the PFC and hypothalamus of animals of both sexes, while in the hippocampus a relative increase of this cytokine in males compared to females was detected. GSH levels were decreased in all brain areas investigated in animals of both sexes, while increased lipid peroxidation was observed in the hypothalamus of females and in the hippocampus of males after LPS exposure. Therefore, the present study gives additional evidence of sex influence in LPS-induced behavioral alterations and, for the first time, in the oxidative changes in brain areas relevant for mood regulation.


Subject(s)
Behavior, Animal/physiology , Brain/physiopathology , Depression/physiopathology , Inflammation/physiopathology , Oxidative Stress/physiology , Animals , Depression/chemically induced , Disease Models, Animal , Female , Inflammation/pathology , Lipopolysaccharides/toxicity , Male , Mice , Sex Characteristics
13.
J Affect Disord ; 225: 40-51, 2018 01 01.
Article in English | MEDLINE | ID: mdl-28783519

ABSTRACT

BACKGROUND: Mania/hypomania is the cardinal feature of bipolar disorder. Recently, single administration of the dopamine transporter (DAT) inhibitor, GBR12909, was related to mania-like alterations. In the present study we aimed at testing behavioral and brain oxidant/neurotrophic alterations induced by the repeated administration of GBR12909 and its prevention/reversal by the mood stabilizing drugs, lithium (Li) and valproate (VAL) as well as by the neuroprotective drug, minocycline (Mino). METHODS: Adult Swiss mice were submitted to 14 days protocols namely prevention and reversal. In the reversal protocol mice were given GBR12909 or saline and between days 8 and 14 received Li, VAL, Mino (25 or 50mg/kg) or saline. In the prevention treatment, mice were pretreated with Li, VAL, Mino or saline prior to GBR12909. RESULTS: GBR12909 repeated administration induced hyperlocomotion and increased risk taking behavior that were prevented and reversed by the mood stabilizers and both doses of Mino. Li, VAL or Mino were more effective in the reversal of striatal GSH alterations induced by GBR12909. Regarding lipid peroxidation Mino was more effective in the prevention and reversal of lipid peroxidation in the hippocampus whereas Li and VAL prevented this alteration in the striatum and PFC. Li, VAL and Mino25 reversed the decrease in BDNF levels induced by GBR12909. CONCLUSION: GBR12909 repeated administration resembles manic phenotype. Similarly to classical mood-stabilizing agents, Mino prevented and reversed GBR12909 manic-like behavior in mice. Thus, our data provide preclinical support to the design of trials investigating Mino's possible antimanic effects.


Subject(s)
Antimanic Agents/pharmacology , Bipolar Disorder/drug therapy , Hippocampus/drug effects , Lithium/pharmacology , Minocycline/pharmacology , Valproic Acid/pharmacology , Animals , Antimanic Agents/therapeutic use , Antioxidants/pharmacology , Brain/drug effects , Disease Models, Animal , Lipid Peroxidation , Lithium/therapeutic use , Male , Mice , Minocycline/therapeutic use , Valproic Acid/therapeutic use
14.
Prog Neuropsychopharmacol Biol Psychiatry ; 80(Pt C): 234-249, 2018 Jan 03.
Article in English | MEDLINE | ID: mdl-28595944

ABSTRACT

Obesity and depression are among the most pressing health problems in the contemporary world. Obesity and depression share a bidirectional relationship, whereby each condition increases the risk of the other. By inference, shared pathways may underpin the comorbidity between obesity and depression. Activation of cell-mediated immunity (CMI) is a key factor in the pathophysiology of depression. CMI cytokines, including IFN-γ, TNFα and IL-1ß, induce the catabolism of tryptophan (TRY) by stimulating indoleamine 2,3-dioxygenase (IDO) resulting in the synthesis of kynurenine (KYN) and other tryptophan catabolites (TRYCATs). In the CNS, TRYCATs have been related to oxidative damage, inflammation, mitochondrial dysfunction, cytotoxicity, excitotoxicity, neurotoxicity and lowered neuroplasticity. The pathophysiology of obesity is also associated with a state of aberrant inflammation that activates aryl hydrocarbon receptor (AHR), a pathway involved in the detection of intracellular or environmental changes as well as with increases in the production of TRYCATs, being KYN an agonists of AHR. Both AHR and TRYCATS are involved in obesity and related metabolic disorders. These changes in the TRYCAT pathway may contribute to the onset of neuropsychiatric symptoms in obesity. This paper reviews the role of immune activation, IDO stimulation and increased TRYCAT production in the pathophysiology of depression and obesity. Here we suggest that increased synthesis of detrimental TRYCATs is implicated in comorbid obesity and depression and is a new drug target to treat both diseases.


Subject(s)
Depression/metabolism , Immunity, Cellular , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Obesity/metabolism , Tryptophan/metabolism , Depression/complications , Humans , Molecular Targeted Therapy/methods , Obesity/complications , Signal Transduction , Tryptophan/analogs & derivatives
15.
Mol Neurobiol ; 55(5): 3775-3788, 2018 May.
Article in English | MEDLINE | ID: mdl-28536974

ABSTRACT

Early-life challenges, particularly infections and stress, are related to neuropsychiatric disorders such as autism and schizophrenia. Here, we conducted a wide range of behavioral tests in periadolescent (postnatal day (PN) 35) and adult (PN70) Swiss mice neonatally challenged with LPS on PN5 and -7, to unveil behavioral alterations triggered by LPS exposure. Immune and neurotrophic (brain-derived neurotrophic factor-BDNF) alterations were determined in the prefrontal cortex (PFC), hippocampus (HC), and hypothalamus (HT). Since the incidence and clinical manifestations of neurodevelopmental disorders present significant sex-related differences, we sought to distinctly evaluate male and female mice. While on PN35, LPS-challenged male mice presented depressive, anxiety-like, repetitive behavior, and working memory deficits; on PN70, only depressive- and anxiety-like behaviors were observed. Conversely, females presented prepulse inhibition (PPI) deficits in both ages studied. Behavioral changes in periadolescence and adulthood were accompanied, in both sexes, by increased levels of interleukin (IL-4) (PFC, HC, and HT) and decreased levels of IL-6 (PFC, HC, and HT). BDNF levels increased in both sexes on PN70. LPS-challenged male mice presented, in both ages evaluated, increased HC myeloperoxidase activity (MPO); while when adult increased levels of interferon gamma (IFNγ), nitrite and decreased parvalbumin were observed. Alterations in innate immunity and parvalbumin were the main LPS-induced remarks between males and females in our study. We concluded that neonatal LPS challenge triggers sex-specific behavioral and neurochemical alterations that resemble autism spectrum disorder, constituting in a relevant model for the mechanistic investigation of sex bias associated with the development of this disorder.


Subject(s)
Autism Spectrum Disorder/metabolism , Behavior, Animal/drug effects , Brain-Derived Neurotrophic Factor/metabolism , Hippocampus/drug effects , Hypothalamus/drug effects , Lipopolysaccharides/pharmacology , Prefrontal Cortex/drug effects , Age Factors , Animals , Autism Spectrum Disorder/immunology , Behavior, Animal/physiology , Disease Models, Animal , Female , Hippocampus/metabolism , Hypothalamus/metabolism , Lipid Peroxidation , Male , Maze Learning/drug effects , Memory, Short-Term/drug effects , Mice , Prefrontal Cortex/metabolism , Sex Factors
16.
Behav Brain Res ; 331: 30-37, 2017 07 28.
Article in English | MEDLINE | ID: mdl-28527693

ABSTRACT

Schizophrenia is considered to be a developmental disorder with distinctive sex differences. Aiming to simulate the vulnerability of the third trimester of human pregnancy to the developmental course of schizophrenia, an animal model was developed, using neonatal poly(I:C) as a first-hit, and peripubertal stress as a second-hit, i.e. a two-hit model. Since, to date, there have been no references to sex differences in the two-hit model, our study sought to determine sex influences on the development of behavior and brain oxidative change in adult rats submitted to neonatal exposure to poly(I:C) on postnatal days 5-7 as well as peripubertal unpredictable stress (PUS). Our results showed that adult two-hit rats present sex-specific behavioral alterations, with females showing more pronounced deficits in prepulse inhibition of the startle reflex and hyperlocomotion, while males showing more deficits in social interaction. Male and female animals exhibited similar working memory deficits. The levels of the endogenous antioxidant, reduced glutathione, were decreased in the prefrontal cortex (PFC) of both male and female animals exposed to both poly(I:C) and poly(I:C)+PUS. Only females presented decrements in GSH levels in the striatum. Nitrite levels were increased in the PFC of male and in the striatum of female poly(I:C)+PUS rats. Increased lipid peroxidation was observed in the PFC of females and in the striatum of males and females exposed to poly(I:C) and poly(I:C)+PUS. Thus, the present study presents evidence for sex differences in behavior and oxidative brain change induced by a two-hit model of schizophrenia.


Subject(s)
Oxidative Stress , Schizophrenia , Animals , Brain/drug effects , Brain/metabolism , Disease Models, Animal , Female , Lipid Peroxidation/drug effects , Male , Memory Disorders/chemically induced , Memory, Short-Term/drug effects , Memory, Short-Term/physiology , Oxidative Stress/drug effects , Poly I-C/pharmacology , Prepulse Inhibition/drug effects , Prepulse Inhibition/physiology , Schizophrenia/chemically induced , Sex Characteristics
17.
Microb Pathog ; 107: 341-348, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28411060

ABSTRACT

Recent research has shown broad antifungal activity of the classic antidepressants selective serotonin reuptake inhibitors (SSRIs). This fact, combined with the increased cross-resistance frequency of the genre Candida regarding the main treatment today, fluconazole, requires the development of novel therapeutic strategies. In that context, this study aimed to assess the antifungal potential of fluoxetine, sertraline, and paroxetine against fluconazole-resistant Candida spp. planktonic cells, as well as to assess the mechanism of action and the viability of biofilms treated with fluoxetine. After 24 h, the fluconazole-resistant Candida spp. strains showed minimum inhibitory concentration (MIC) in the ranges of 20-160 µg/mL for fluoxetine, 10-20 µg/mL for sertraline, and 10-100.8 µg/mL for paroxetine by the broth microdilution method (M27-A3). According to our data by flow cytometry, each of the SSRIs cause fungal death after damaging the plasma and mitochondrial membrane, which activates apoptotic signaling pathways and leads to dose-dependant cell viability loss. Regarding biofilm-forming isolates, the fluoxetine reduce mature biofilm of all the species tested. Therefore, it is concluded that SSRIs are capable of inhibit the growth in vitro of Candida spp., both in planktonic form, as biofilm, inducing cellular death by apoptosis.


Subject(s)
Antifungal Agents/pharmacology , Biofilms/drug effects , Candida/drug effects , Drug Resistance, Fungal/drug effects , Fluconazole/pharmacology , Selective Serotonin Reuptake Inhibitors/pharmacology , Animals , Apoptosis/drug effects , Biofilms/growth & development , Candida/cytology , Candida/genetics , Candida/growth & development , Cell Count , Cell Death/drug effects , Cell Line , Cell Proliferation/drug effects , DNA Damage/drug effects , DNA, Fungal/drug effects , Fibroblasts/microbiology , Flow Cytometry , In Vitro Techniques , Membrane Potentials , Mice , Microbial Sensitivity Tests , Microbial Viability/drug effects , Mitochondrial Membranes/drug effects , Paroxetine/pharmacology , Plasma/drug effects , Selective Serotonin Reuptake Inhibitors/administration & dosage , Sertraline/pharmacology
18.
Article in English | MEDLINE | ID: mdl-26812248

ABSTRACT

Kindling is a form of behavioral sensitization that is related to the progression of several neuropsychiatric disorders such as bipolar disorder. We recently demonstrated that female periadolescent rats are more vulnerable to nicotine (NIC)-induced kindling than their male counterparts. Furthermore, we evidenced that decreases in brain antioxidative defenses may contribute to this gender difference. Here we aimed to determine the preventive effects of the antioxidant N-acetyl cysteine (NAC) against NIC-kindling in female periadolescent rats. To do this female Wistar rats at postnatal day 30 received repeated injections of NIC 2mg/kg, i.p. every weekday for up to 19 days. NAC90, 180 or 270 mg/kg, i.p. was administered 30 min before NIC. The levels of glutathione (GSH), superoxide dismutase (SOD) activity, lipid peroxidation (LP) and nitrite were determined in the prefrontal cortex (PFC), hippocampus (HC) and striatum (ST). The development of kindling occurred at a median time of 16.5 days with 87.5% of NIC animals presenting stage 5 seizures in the last day of drug administration. NAC270 prevented the occurrence of kindling. NIC-kindled animals presented decreased levels of GSH and increased LP in the PFC, HC and ST, while SOD activity was decreased in the ST. NAC180 or 270 prevented the alterations in GSH induced by NIC, but only NAC270 prevented the alterations in LP. Nitrite levels increased in the ST of NAC270 pretreated NIC-kindled animals. Taken together we demonstrated that NAC presents anti-kindling effects in female animals partially through the restoration of oxidative alterations.


Subject(s)
Acetylcysteine/pharmacology , Free Radical Scavengers/pharmacology , Kindling, Neurologic/drug effects , Nicotine/pharmacology , Nicotinic Agonists/pharmacology , Animals , Dose-Response Relationship, Drug , Drug Interactions , Estradiol/blood , Female , Glutathione/metabolism , Lipid Peroxidation/drug effects , Nitrites/metabolism , Rats , Rats, Wistar , Statistics, Nonparametric , Superoxide Dismutase/metabolism
19.
Psychiatry Res ; 230(2): 211-9, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26350703

ABSTRACT

Brain derived neurotrophic factor (BDNF) is linked to the pathophysiology of depression. We hypothesized that BDNF is one of the neurobiological pathways related to the augmentation effect of alpha-lipoic acid (ALA) when associated with antidepressants. Female mice were administered vehicle or CORT 20mg/kg during 14 days. From the 15th to 21st days the animals were divided in groups that were further administered: vehicle, desvenlafaxine (DVS) 10 or 20mg/kg, ALA 100 or 200mg/kg or the combinations of DVS10+ALA100, DVS20+ALA100, DVS10+ALA200 or DVS20+ALA200. ALA or DVS alone or in combination reversed CORT-induced increase in immobility time in the forced swimming test and decrease in sucrose preference, presenting, thus, an antidepressant-like effect. DVS10 alone reversed CORT-induced decrease in BDNF in the prefrontal cortex (PFC), hippocampus (HC) and striatum (ST). The same was observed in the HC and ST of ALA200 treated animals. The combination of DVS and ALA200 reversed CORT-induced alterations in BDNF and even, in some cases, increased the levels of this neurotrophin when compared to vehicle-treated animals in HC and ST. Taken together, these results suggest that the combination of the DVS+ALA may be valuable for treating conditions in which BDNF levels are decreased, such as depression.


Subject(s)
Antioxidants/administration & dosage , Brain-Derived Neurotrophic Factor/metabolism , Corticosterone/pharmacology , Depression/metabolism , Desvenlafaxine Succinate/administration & dosage , Thioctic Acid/administration & dosage , Animals , Antidepressive Agents/administration & dosage , Depression/drug therapy , Drug Therapy, Combination , Female , Hippocampus/drug effects , Hippocampus/metabolism , Mice , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Swimming/physiology , Swimming/psychology
20.
Eur Neuropsychopharmacol ; 25(11): 2086-97, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26321203

ABSTRACT

Activation of the brain angiotensin II type 1 receptor (AT1R) triggers pro-oxidant and pro-inflammatory mechanisms which are involved in the neurobiology of bipolar disorder (BD). Candesartan (CDS) is an AT1 receptor antagonist with potential neuroprotective properties. Herein we investigated CDS effects against oxidative, neurotrophic inflammatory and cognitive effects of amphetamine (AMPH)-induced mania. In the reversal protocol adult mice were given AMPH 2 mg/kg i.p. or saline and between days 8 and 14 received CDS 0.1, 0.3 or 1 mg/kg orally, lithium (Li) 47.5 mg/kg i.p., or saline. In the prevention treatment, mice were pretreated with CDS, Li or saline prior to AMPH. Locomotor activity and working memory performance were assessed. Glutathione (GSH), thiobarbituric acid-reactive substance (TBARS) and TNF-α levels were evaluated in the hippocampus (HC) and cerebellar vermis (CV). Brain-derived neurotrophic factor (BDNF) and glycogen synthase kinase 3-beta (GSK-3beta) levels were measured in the HC. CDS and Li prevented and reversed the AMPH-induced increases in locomotor activity. Only CDS prevented and reversed AMPH-induced working memory deficits. CDS prevented AMPH-induced alterations in GSH (HC and CV), TBARS (HC and CV), TNF-α (HC and CV) and BDNF (HC) levels. Li prevented alterations in BDNF and phospho-Ser9-GSK3beta. CDS reversed AMPH-induced alterations in GSH (HC and CV), TBARS (HC), TNF-α (CV) and BDNF levels. Li reversed AMPH-induced alterations in TNF-α (HC and CV) and BDNF (HC) levels. CDS is effective in reversing and preventing AMPH-induced behavioral and biochemical alterations, providing a rationale for the design of clinical trials investigating CDS׳s possible therapeutic effects.


Subject(s)
Antimanic Agents/pharmacology , Benzimidazoles/pharmacology , Bipolar Disorder/drug therapy , Tetrazoles/pharmacology , Amphetamine , Angiotensin II Type 1 Receptor Blockers/pharmacology , Animals , Anti-Inflammatory Agents/pharmacology , Antimanic Agents/blood , Antioxidants/pharmacology , Biphenyl Compounds , Bipolar Disorder/physiopathology , Brain/drug effects , Brain/metabolism , Disease Models, Animal , Drug Evaluation, Preclinical , Lithium Compounds/blood , Lithium Compounds/pharmacology , Male , Memory Disorders/drug therapy , Memory Disorders/physiopathology , Memory, Short-Term/drug effects , Motor Activity/drug effects , Nerve Growth Factors/pharmacology , Random Allocation
SELECTION OF CITATIONS
SEARCH DETAIL
...