Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 159: 262-273, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31102855

ABSTRACT

Geoengineering techniques have been used to control phosphorus and cyanobacteria in lakes promising greater and quicker chemical and ecological recovery. Techniques that use coagulants and clays to remove particulates and dissolved phosphorus from the water column have received great. In this study, bench-scale "flock & sink" assays were carried out to evaluate the efficiency of the coagulants aluminium sulphate (SUL), polyaluminium chloride (PAC) and chitosan (CHI), alone and combined with natural bentonite clays (BEN) and lanthanum-modified bentonite (LMB), to remove of phosphorus from a eutrophic reservoir in a semi-arid region of Brazil. In addition, the study seeks to assess the effects on the cyanobacteria density and the intra- and extracellular concentrations of cyanotoxins after the application of these geoengineering materials. The SUL and PAC coagulants effectively reduced the total phosphorus (TP), reactive soluble phosphorus (SRP), turbidity, chlorophyll-a, cyanobacteria density and intracellular microcystin, whereas CHI showed a low removal efficiency. Lanthanum-modified bentonite proved to be more effective than BEN; however, the application of the coagulants only was sufficient to successfully remove phosphorus and cyanobacteria from the water column. In addition, the efficiency of the "flock & sink" technique in cell removal varied among the cyanobacteria species. Small colonial species such as Aphanocapsa delicatissima, Merismopedia glauca and Merismopedia tenuissima were removed regardless of the treatment used, including those with CHI and BEN. As for the filamentous cyanobacteria, Cylindrospermopsis raciborskii, Geitlerinema amphibium, Planktothrix agardhii and Pseudanabaena catenata, removal was achieved only using PAC, SUL and LMB alone or when combined. The intracellular concentrations of saxitoxin and cylindrospermopsin and the extracellular fraction of these cyanotoxins and of microcystin were not influenced by the application of coagulants and clays. This indicates that cell lysis did not occur with the addition of the geoengineering materials. These results demonstrate that the "flock & sink" technique could be used for restoration of eutrophic waters.


Subject(s)
Cyanobacteria , Cylindrospermopsis , Brazil , Lakes , Phosphorus
SELECTION OF CITATIONS
SEARCH DETAIL
...