Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 3(9): 3589-93, 2011 Sep 01.
Article in English | MEDLINE | ID: mdl-21804975

ABSTRACT

Microwave microscopy has recently attracted intensive effort, owing to its capability to provide quantitative information about the local composition and the electromagnetic response of a sample. Nonetheless, the interpretation of microwave images remains a challenge as the electromagnetic waves interact with the sample and the surrounding in a multitude of ways following different paths: microwave images are a convolution of all contributions. In this work we show that examining the time evolution of the electromagnetic waves allows us to disentangle each contribution, providing images with striking quality and unexplored scenarios for near-field microscopy.


Subject(s)
Microscopy, Scanning Probe/methods , Nanotechnology/methods , Animals , Cell Line , Graphite/chemistry , Mice , Microwaves
2.
Nat Commun ; 2: 297, 2011.
Article in English | MEDLINE | ID: mdl-21540839

ABSTRACT

Addressing the effects of confinement and crowding on biomolecular function may provide insight into molecular mechanisms within living organisms, and may promote the development of novel biotechnology tools. Here, using molecular manipulation methods, we investigate restriction enzyme reactions with double-stranded (ds)DNA oligomers confined in relatively large (and flat) brushy matrices of monolayer patches of controlled, variable density. We show that enzymes from the contacting solution cannot access the dsDNAs from the top-matrix interface, and instead enter at the matrix sides to diffuse two-dimensionally in the gap between top- and bottom-matrix interfaces. This is achieved by limiting lateral access with a barrier made of high-density molecules that arrest enzyme diffusion. We put forward, as a possible explanation, a simple and general model that relates these data to the steric hindrance in the matrix, and we briefly discuss the implications and applications of this strikingly new phenomenon.


Subject(s)
DNA Restriction Enzymes/chemistry , DNA/chemistry , Diffusion , Surface Properties
3.
J Biomed Opt ; 13(1): 010504, 2008.
Article in English | MEDLINE | ID: mdl-18315349

ABSTRACT

We present a novel optical sensor able to measure the distance between the tip of an endoscopic probe and the anatomical object under examination. In medical endoscopy, knowledge of the real distance from the endoscope to the anatomical wall provides the actual dimensions and areas of the anatomical objects. Currently, endoscopic examination is limited to a direct and qualitative observation of anatomical cavities. The major obstacle to quantitative imaging is the inability to calibrate the acquired images because of the magnification system. However, the possibility of monitoring the actual size of anatomical objects is a powerful tool both in research and in clinical investigation. To solve this problem in a satisfactory way we study and realize an absolute distance sensor based on fiber optic low-coherence interferometry (FOLCI). Until now the sensor has been tested on pig trachea, simulating the real humidity and temperature (37 degrees C) conditions. It showed high sensitivity, providing correct and repeatable distance measurements on biological samples even in case of very low reflected power (down to 2 to 3 nW), with an error lower than 0.1 mm.


Subject(s)
Endoscopes , Lenses , Micromanipulation/instrumentation , Photometry/instrumentation , Transducers , Equipment Design , Equipment Failure Analysis , Micromanipulation/methods , Photometry/methods , Reproducibility of Results , Sensitivity and Specificity
4.
Appl Opt ; 46(15): 3031-7, 2007 May 20.
Article in English | MEDLINE | ID: mdl-17514254

ABSTRACT

We study the use of individual multimode fibers for the purposes of microendoscopy. We discuss the question of image decomposition in the several modes propagating over the fiber and their scattering at the truncated fiber end. We derive analytically the scattering matrix of the "fiber-to-air" interface, we quantify the extent of intermodal coupling, and we evaluate the radiation diagram from the fiber end. Results show that intermodal coupling is weak, so that it appears possible to "capture" an external image and transmit the same through the fiber, after appropriate phase correction, without excessive distortion.


Subject(s)
Endoscopy/methods , Image Processing, Computer-Assisted/methods , Optics and Photonics , Air , Algorithms , Equipment Design , Models, Statistical , Models, Theoretical , Radiation , Research , Scattering, Radiation , Technology , Telecommunications
5.
BMC Med Imaging ; 6: 5, 2006 Jun 07.
Article in English | MEDLINE | ID: mdl-16759378

ABSTRACT

BACKGROUND: Subtraction of Dynamic Contrast-Enhanced 3D Magnetic Resonance (DCE-MR) volumes can result in images that depict and accurately characterize a variety of liver lesions. However, the diagnostic utility of subtraction images depends on the extent of co-registration between non-enhanced and enhanced volumes. Movement of liver structures during acquisition must be corrected prior to subtraction. Currently available methods are computer intensive. We report a new method for the dynamic subtraction of MR liver images that does not require excessive computer time. METHODS: Nineteen consecutive patients (median age 45 years; range 37-67) were evaluated by VIBE T1-weighted sequences (TR 5.2 ms, TE 2.6 ms, flip angle 20 degrees , slice thickness 1.5 mm) acquired before and 45s after contrast injection. Acquisition parameters were optimized for best portal system enhancement. Pre and post-contrast liver volumes were realigned using our 3D registration method which combines: (a) rigid 3D translation using maximization of normalized mutual information (NMI), and (b) fast 2D non-rigid registration which employs a complex discrete wavelet transform algorithm to maximize pixel phase correlation and perform multiresolution analysis. Registration performance was assessed quantitatively by NMI. RESULTS: The new registration procedure was able to realign liver structures in all 19 patients. NMI increased by about 8% after rigid registration (native vs. rigid registration 0.073 +/- 0.031 vs. 0.078 +/- 0.031, n.s., paired t-test) and by a further 23% (0.096 +/- 0.035 vs. 0.078 +/- 0.031, p < 0.001, paired t-test) after non-rigid realignment. The overall average NMI increase was 31%. CONCLUSION: This new method for realigning dynamic contrast-enhanced 3D MR volumes of liver leads to subtraction images that enhance diagnostic possibilities for liver lesions.

SELECTION OF CITATIONS
SEARCH DETAIL
...