Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Cell Biol ; 21(8): 1003-1014, 2019 08.
Article in English | MEDLINE | ID: mdl-31371825

ABSTRACT

In many cancers, high proliferation rates correlate with elevation of rRNA and tRNA levels, and nucleolar hypertrophy. However, the underlying mechanisms linking increased nucleolar transcription and tumorigenesis are only minimally understood. Here we show that IMP dehydrogenase-2 (IMPDH2), the rate-limiting enzyme for de novo guanine nucleotide biosynthesis, is overexpressed in the highly lethal brain cancer glioblastoma. This leads to increased rRNA and tRNA synthesis, stabilization of the nucleolar GTP-binding protein nucleostemin, and enlarged, malformed nucleoli. Pharmacological or genetic inactivation of IMPDH2 in glioblastoma reverses these effects and inhibits cell proliferation, whereas untransformed glia cells are unaffected by similar IMPDH2 perturbations. Impairment of IMPDH2 activity triggers nucleolar stress and growth arrest of glioblastoma cells even in the absence of functional p53. Our results reveal that upregulation of IMPDH2 is a prerequisite for the occurance of aberrant nucleolar function and increased anabolic processes in glioblastoma, which constitutes a primary event in gliomagenesis.


Subject(s)
Carcinogenesis/metabolism , Glioblastoma/metabolism , IMP Dehydrogenase/metabolism , Cell Line, Tumor , Cell Nucleolus/metabolism , Cell Proliferation/physiology , Cell Transformation, Neoplastic/metabolism , Humans , IMP Dehydrogenase/genetics , RNA, Ribosomal/metabolism
2.
Mol Cell ; 60(2): 307-18, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26455392

ABSTRACT

Epidermal growth factor receptor (EGFR) gene amplification and mutations are the most common oncogenic events in glioblastoma (GBM), but the mechanisms by which they promote aggressive tumor growth are not well understood. Here, through integrated epigenome and transcriptome analyses of cell lines, genotyped clinical samples, and TCGA data, we show that EGFR mutations remodel the activated enhancer landscape of GBM, promoting tumorigenesis through a SOX9 and FOXG1-dependent transcriptional regulatory network in vitro and in vivo. The most common EGFR mutation, EGFRvIII, sensitizes GBM cells to the BET-bromodomain inhibitor JQ1 in a SOX9, FOXG1-dependent manner. These results identify the role of transcriptional/epigenetic remodeling in EGFR-dependent pathogenesis and suggest a mechanistic basis for epigenetic therapy.


Subject(s)
Brain Neoplasms/genetics , Epigenesis, Genetic , ErbB Receptors/genetics , Forkhead Transcription Factors/genetics , Glioblastoma/genetics , Nerve Tissue Proteins/genetics , SOX9 Transcription Factor/genetics , Adult , Animals , Azepines/pharmacology , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Survival/drug effects , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Child , ErbB Receptors/metabolism , Forkhead Transcription Factors/metabolism , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Mice , Mice, Nude , Mutation , Neoplasm Transplantation , Nerve Tissue Proteins/metabolism , SOX9 Transcription Factor/metabolism , Signal Transduction , Transcriptome , Triazoles/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...