Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Neurosci ; 14: 594561, 2020.
Article in English | MEDLINE | ID: mdl-33363456

ABSTRACT

TDP-43 is a major component of cytoplasmic inclusions observed in neurodegenerative diseases like frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). To further understand the role of TDP-43 in mRNA/protein metabolism and proteostasis, we used a combined approach with cellular and animal models overexpressing a cytoplasmic form of human TDP-43 (TDP-43-ΔNLS), recapitulating ALS/FTD features. We applied in HEK293 cells a method for labeling de novo translation, surface sensing of translation (SUnSET), based on puromycin (PURO) incorporation. While control cells displayed robust puromycilation, TDP-43-ΔNLS transfected cells exhibited reduced ongoing protein synthesis. Next, by using a transgenic mouse overexpressing cytoplasmic TDP-43 in the forebrain (TDP-43-ΔNLS mice) we assessed whether cytoplasmic TDP-43 regulates global translation in vivo. Polysome profiling of brain cortices from transgenic mice showed a shift toward non-polysomal fractions as compared to wild-type littermates, indicating a decrease in global translation. Lastly, cellular level translational assessment by SUNSET was performed in TDP-43-ΔNLS mice brain slices. Control mice slices incubated with PURO exhibited robust cytoplasmic PURO signal in layer 5 neurons from motor cortex, and normal nuclear TDP-43 staining. Neurons in TDP-43-ΔNLS mice slices incubated with PURO exhibited high cytoplasmic expression of TDP-43 and reduced puromycilation respect to control mice. These in vitro and in vivo results indicate that cytoplasmic TDP-43 decreases global translation and potentially cause functional/cytotoxic effects as observed in ALS/FTD. Our study provide in vivo evidence (by two independent and complementary methods) for a role of mislocalized TDP-43 in the regulation of global mRNA translation, with implications for TDP-43 proteinopathies.

2.
J Cell Sci ; 128(8): 1542-54, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25736288

ABSTRACT

Repression of mRNA translation is linked to the formation of specific cytosolic foci such as stress granules and processing bodies, which store or degrade mRNAs. In neurons, synaptic activity regulates translation at the post-synapse and this is important for plasticity. N-methyl-D-aspartate (NMDA) receptor stimulation downregulates translation, and we speculate that this is linked to the formation of unknown mRNA-silencing foci. Here, we show that the 5'-3' exoribonuclease XRN1 forms discrete clusters associated with the post-synapse that are different from processing bodies or stress granules, and we named them synaptic XRN1 bodies (SX-bodies). Using primary neurons, we found that the SX-bodies respond to synapse stimulation and that their formation correlates inversely with the local translation rate. SX-bodies increase in size and number upon NMDA stimulation, and metabotropic glutamate receptor activation provokes SX-body dissolution, along with increased translation. The response is specific and the previously described Smaug1 foci and FMRP granules show a different response. Finally, XRN1 knockdown impairs the translational repression triggered by NMDA. Collectively, these observations support a role for the SX-bodies in the reversible masking and silencing of mRNAs at the synapse.


Subject(s)
DNA-Binding Proteins/metabolism , Exoribonucleases/metabolism , RNA, Messenger/genetics , Receptors, Metabotropic Glutamate/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Synapses/metabolism , Amino Acid Sequence , Animals , Cells, Cultured , Gene Expression Regulation , Mice , Molecular Sequence Data , Neurons/metabolism , Organelles , Protein Biosynthesis , Rats, Sprague-Dawley
3.
Cell Mol Life Sci ; 71(12): 2219-39, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24212248

ABSTRACT

The production of proteins from mRNAs localized at the synapse ultimately controls the strength of synaptic transmission, thereby affecting behavior and cognitive functions. The regulated transcription, processing, and transport of mRNAs provide dynamic control of the dendritic transcriptome, which includes thousands of messengers encoding multiple cellular functions. Translation is locally modulated by synaptic activity through a complex network of RNA-binding proteins (RBPs) and various types of non-coding RNAs (ncRNAs) including BC-RNAs, microRNAs, piwi-interacting RNAs, and small interference RNAs. The RBPs FMRP and CPEB play a well-established role in synaptic translation, and additional regulatory factors are emerging. The mRNA repressors Smaug, Nanos, and Pumilio define a novel pathway for local translational control that affects dendritic branching and spines in both flies and mammals. Recent findings support a role for processing bodies and related synaptic mRNA-silencing foci (SyAS-foci) in the modulation of synaptic plasticity and memory formation. The SyAS-foci respond to different stimuli with changes in their integrity thus enabling regulated mRNA release followed by translation. CPEB, Pumilio, TDP-43, and FUS/TLS form multimers through low-complexity regions related to prion domains or polyQ expansions. The oligomerization of these repressor RBPs is mechanistically linked to the aggregation of abnormal proteins commonly associated with neurodegeneration. Here, we summarize the current knowledge on how specificity in mRNA translation is achieved through the concerted action of multiple pathways that involve regulatory ncRNAs and RBPs, the modification of translation factors, and mRNA-silencing foci dynamics.


Subject(s)
Protein Biosynthesis , Synapses/genetics , Synapses/metabolism , Animals , Gene Expression Regulation , Humans , Protein Transport , Synaptic Transmission/genetics , Transcriptome
4.
Commun Integr Biol ; 5(4): 388-92, 2012 Jul 01.
Article in English | MEDLINE | ID: mdl-23060966

ABSTRACT

The regulated synthesis of specific proteins at the synapse is important for neuron plasticity, and several localized mRNAs are translated upon specific stimulus. Repression of mRNA translation is linked to the formation of mRNA-silencing foci, including Processing Bodies (PBs) and Stress Granules (SGs), which are macromolecular aggregates that harbor silenced messengers and associated proteins. In a recent work, we identified a kind of mRNA-silencing foci unique to neurons, termed S-foci, that contain the post-transcriptional regulator Smaug1/SAMD4. Upon specific synaptic stimulation, the S-foci dissolve and release mRNAs to allow their translation, paralleling the cycling of mRNAs between PBs and polysomes in other cellular contexts. Smaug 1 and other proteins involved in mRNA regulation in neurons contain aggregation domains distinct from their RNA binding motifs, and we speculate that self-aggregation helps silencing and transport. In addition to S-foci and PBs, other foci formed by distinct RNA binding proteins, such as TDP-43 and FMRP among others, respond dynamically to specific synaptic stimuli. We propose the collective name of synaptic activity-regulated mRNA silencing (SyAS) foci for these RNP aggregates that selectively respond to distinct stimulation patterns and contribute to the fine-tuning of local protein synthesis at the synapse.

5.
PLoS One ; 7(5): e36447, 2012.
Article in English | MEDLINE | ID: mdl-22590546

ABSTRACT

The p53 tumor suppressor protein is an important regulator of cell proliferation and apoptosis. p53 can be found in the nucleus and in the cytosol, and the subcellular location is key to control p53 function. In this work, we found that a widely used monoclonal antibody against p53, termed Pab 1801 (Pan antibody 1801) yields a remarkable punctate signal in the cytoplasm of several cell lines of human origin. Surprisingly, these puncta were also observed in two independent p53-null cell lines. Moreover, the foci stained with the Pab 1801 were present in rat cells, although Pab 1801 recognizes an epitope that is not conserved in rodent p53. In contrast, the Pab 1801 nuclear staining corresponded to genuine p53, as it was upregulated by p53-stimulating drugs and absent in p53-null cells. We identified the Pab 1801 cytoplasmic puncta as P Bodies (PBs), which are involved in mRNA regulation. We found that, in several cell lines, including U2OS, WI38, SK-N-SH and HCT116, the Pab 1801 puncta strictly colocalize with PBs identified with specific antibodies against the PB components Hedls, Dcp1a, Xrn1 or Rck/p54. PBs are highly dynamic and accordingly, the Pab 1801 puncta vanished when PBs dissolved upon treatment with cycloheximide, a drug that causes polysome stabilization and PB disruption. In addition, the knockdown of specific PB components that affect PB integrity simultaneously caused PB dissolution and the disappearance of the Pab 1801 puncta. Our results reveal a strong cross-reactivity of the Pab 1801 with unknown PB component(s). This was observed upon distinct immunostaining protocols, thus meaning a major limitation on the use of this antibody for p53 imaging in the cytoplasm of most cell types of human or rodent origin.


Subject(s)
Antibodies, Monoclonal, Murine-Derived/chemistry , Antibodies, Monoclonal, Murine-Derived/immunology , Antibody Specificity , Cytoplasm/immunology , Epitopes/immunology , Tumor Suppressor Protein p53/immunology , Animals , Cell Line, Tumor , Cytoplasm/chemistry , Epitopes/chemistry , Humans , Immunohistochemistry , Rats , Rats, Sprague-Dawley , Tumor Suppressor Protein p53/metabolism
6.
PLoS One ; 7(12): e51495, 2012.
Article in English | MEDLINE | ID: mdl-23284702

ABSTRACT

The spontaneous and reversible formation of foci and filaments that contain proteins involved in different metabolic processes is common in both the nucleus and the cytoplasm. Stress granules (SGs) and processing bodies (PBs) belong to a novel family of cellular structures collectively known as mRNA silencing foci that harbour repressed mRNAs and their associated proteins. SGs and PBs are highly dynamic and they form upon stress and dissolve thus releasing the repressed mRNAs according to changes in cell physiology. In addition, aggregates containing abnormal proteins are frequent in neurodegenerative disorders. In spite of the growing relevance of these supramolecular aggregates to diverse cellular functions a reliable automated tool for their systematic analysis is lacking. Here we report a MATLAB Script termed BUHO for the high-throughput image analysis of cellular foci. We used BUHO to assess the number, size and distribution of distinct objects with minimal deviation from manually obtained parameters. BUHO successfully addressed the induction of both SGs and PBs in mammalian and insect cells exposed to different stress stimuli. We also used BUHO to assess the dynamics of specific mRNA-silencing foci termed Smaug 1 foci (S-foci) in primary neurons upon synaptic stimulation. Finally, we used BUHO to analyze the role of candidate genes on SG formation in an RNAi-based experiment. We found that FAK56D, GCN2 and PP1 govern SG formation. The role of PP1 is conserved in mammalian cells as judged by the effect of the PP1 inhibitor salubrinal, and involves dephosphorylation of the translation factor eIF2α. All these experiments were analyzed manually and by BUHO and the results differed in less than 5% of the average value. The automated analysis by this user-friendly method will allow high-throughput image processing in short times by providing a robust, flexible and reliable alternative to the laborious and sometimes unfeasible visual scrutiny.


Subject(s)
Drosophila melanogaster/cytology , Image Processing, Computer-Assisted/methods , Molecular Imaging/methods , Organelles/metabolism , Software , Algorithms , Animals , Drosophila melanogaster/genetics , Oxidative Stress , RNA Interference , RNA, Messenger/genetics , RNA, Messenger/isolation & purification , Synapses/metabolism , Time Factors
7.
J Cell Biol ; 195(7): 1141-57, 2011 Dec 26.
Article in English | MEDLINE | ID: mdl-22201125

ABSTRACT

Mammalian Smaug1/Samd4A is a translational repressor. Here we show that Smaug1 forms mRNA-silencing foci located at postsynapses of hippocampal neurons. These structures, which we have named S-foci, are distinct from P-bodies, stress granules, or other neuronal RNA granules hitherto described, and are the first described mRNA-silencing foci specific to neurons. RNA binding was not required for aggregation, which indicates that S-foci formation is not a consequence of mRNA silencing. N-methyl-D-aspartic acid (NMDA) receptor stimulation provoked a rapid and reversible disassembly of S-foci, transiently releasing transcripts (the CaMKIIα mRNA among others) to allow their translation. Simultaneously, NMDA triggered global translational silencing, which suggests the specific activation of Smaug1-repressed transcripts. Smaug1 is expressed during synaptogenesis, and Smaug1 knockdown affected the number and size of synapses, and also provoked an impaired response to repetitive depolarizing stimuli, as indicated by a reduced induction of Arc/Arg3.1. Our results suggest that S-foci control local translation, specifically responding to NMDA receptor stimulation and affecting synaptic plasticity.


Subject(s)
Gene Silencing/drug effects , N-Methylaspartate/pharmacology , RNA, Messenger/genetics , Repressor Proteins/genetics , Synapses/drug effects , Synapses/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Cell Line, Tumor , Cells, Cultured , Dendrites/metabolism , HeLa Cells , Hippocampus/cytology , Hippocampus/drug effects , Hippocampus/metabolism , Humans , Neurons/cytology , Neurons/drug effects , Neurons/metabolism , Polyribosomes/metabolism , Protein Biosynthesis , RNA, Messenger/metabolism , Receptors, N-Methyl-D-Aspartate/agonists , Receptors, N-Methyl-D-Aspartate/metabolism , Repressor Proteins/deficiency , Repressor Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...