Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Language
Publication year range
1.
Int J Exerc Sci ; 17(6): 670-681, 2024.
Article in English | MEDLINE | ID: mdl-38863769

ABSTRACT

Smartpaddle® is a novel wearable device based on inertial measurement units (IMU) for in-field arm-stroke kinetics and kinematics analysis in swimming. However, the lack of data regarding its agreement and reliability, coupled with restricted access to raw data, emphasizes the need to evaluate it against a well-established strain gauge (SG) reference method for assessing swimming forces. Thus, this study aimed to investigate the agreement and reliability between the Smartpaddle® and strain gauge in a 30-s all-out arms-only tethered swimming test. Twelve trained young adult swimmers performed a test-retest 30-s all-out arms-only tethered swimming trial. Peak and mean forces were obtained from IMU (PFIMU and MFIMU) and SG (PFSG and MFSG) simultaneously. Statistical differences and correlations were found in both peak (PFSG = 158.46 ± 48.85 N, PFIMU = 75.47 ± 12.05 N, p < 0.001, r = 0.88) and mean (MFSG = 69.62 ± 16.36 N, MFIMU = 30.06 ± 5.42 N, p < 0.001, r = 0.84) forces between devices, presenting elevated systematic errors for both variables. No differences were found in IMU data between test-retest conditions in both peak (PFIMU = 75.47 ± 12.05 N, PFIMU = 75.45 ± 11.54 N, p = 0.99, ICC = 0.96) and mean (MFIMU = 30.06 ± 5.42 N, MFIMU = 30.21 ± 5.83 N, p = 0.80, ICC = 0.95) forces, with negligible systematic errors. In conclusion, although the Smartpaddle® device is not directly comparable to the strain gauge reference method, it has demonstrated high reliability levels in test-retest trials.

2.
Eur J Appl Physiol ; 124(6): 1795-1805, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38231229

ABSTRACT

This study aimed to investigate the effects of a 4-week live high train low (LHTL; FiO2 ~ 13.5%), intervention, followed by a tapering phase, on muscle glycogen concentration. Fourteen physically active males (28 ± 6 years, 81.6 ± 15.4 kg, 179 ± 5.2 cm) were divided into a control group (CON; n = 5), and the group that performed the LHTL, which was exposed to hypoxia (LHTL; n = 9). The subjects trained using a one-legged knee extension exercise, which enabled four experimental conditions: leg training in hypoxia (TLHYP); leg control in hypoxia (CLHYP, n = 9); leg trained in normoxia (TLNOR, n = 5), and leg control in normoxia (CLNOR, n = 5). All participants performed 18 training sessions lasting between 20 and 45 min [80-200% of intensity corresponding to the time to exhaustion (TTE) reached in the graded exercise test]. Additionally, participants spent approximately 10 h day-1 in either a normobaric hypoxic environment (14.5% FiO2; ~ 3000 m) or a control condition (i.e., staying in similar tents on ~ 530 m). Thereafter, participants underwent a taper protocol consisting of six additional training sessions with a reduced training load. SpO2 was lower, and the hypoxic dose was higher in LHTL compared to CON (p < 0.001). After 4 weeks, glycogen had increased significantly only in the TLNOR and TLHYP groups and remained elevated after the taper (p < 0.016). Time to exhaustion in the LHTL increased after both the 4-week training period and the taper compared to the baseline (p < 0.001). Although the 4-week training promoted substantial increases in muscle glycogen content, TTE increased in LHTL condition.


Subject(s)
Glycogen , Muscle, Skeletal , Humans , Male , Glycogen/metabolism , Muscle, Skeletal/physiology , Muscle, Skeletal/metabolism , Adult , Hypoxia/metabolism , Exercise/physiology , Oxygen Consumption/physiology , Young Adult
3.
Int J Sports Med ; 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-37940111

ABSTRACT

The total anaerobic contribution (AC[La-]+PCr) is a valid and reliable methodology. However, the active muscle mass plays an important role in the AC[La-]+PCr determination, which might influence its reliability. Thus, this study aimed to investigate the effects of two exhaustive intensities on the reliability of the AC[La-]+PCr during a one-legged knee extension (1L-KE) exercise. Thirteen physically active males were submitted to a graded exercise to determine the peak power output (PPO) in the 1L-KE. Then, two constant-load exercises were conducted to task failure at 100% (TTF100) and 110% (TTF110) of PPO, and the exercises were repeated on a third day. The blood lactate accumulation and the oxygen uptake after exercise were used to estimate the anaerobic lactic and alactic contributions, respectively. Higher values of AC[La-]+PCr were found after the TTF100 compared to TTF110 (p=0.042). In addition, no significant differences (p=0.432), low systematic error (80.9 mL), and a significant ICC (0.71; p=0.004) were found for AC[La-]+PCr in the TTF100. However, an elevated coefficient of variation was found (13.7%). In conclusion, we suggest the use of the exhaustive efforts performed at 100% of the PPO with the 1L-KE model, but its elevated individual variability must be carefully considered in future studies.

4.
Rev. bras. med. esporte ; 30: e2021_0499, 2024. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1515071

ABSTRACT

ABSTRACT Introduction: Traditional intermittent hypoxia training improves sport performance after short periods of exposure, but acute exposure to intermittent hypoxia leads to decreased training intensity and technical quality. The solution to overcome these negative effects may be to perform efforts in normoxia and the intervals between efforts in hypoxia, maintaining the quality of training and the benefits of hypoxia. Objective: This study aimed to evaluate the acute physiological responses to hypoxia exposure during recovery between high intensity efforts. Materials and methods: Randomized, one-blind, placebo-controlled study. Sixteen men performed a graded exercise test to determine their maximal intensity and two sessions of high-intensity interval training. The training intervals could be in hypoxia (HRT), FIO2: 0.136 or normoxia (NRT), FIO2: 0.209. During the two-minute interval between the ten one-minute efforts, peripheral oxygen saturation (SpO2), heart rate (HR), blood lactate ([La]), blood glucose ([Glu]) were constantly measured. Results: There were differences in HR (TRN = 120 ± 14 bpm; TRH = 129 ± 13 bpm, p < 0.01) and SpO2 (TRN = 96.9 ± 1.0%; TRH = 86.2 ± 3.5%, p < 0.01). No differences in [La] and [Glu] TRN (4.4 ± 1.7 mmol.l-1; 3.9 ± 0.5 mmol.l-1) and TRH (5.2 ± 2.0 mmol.l-1; 4.0 ± 0.8 mmol.l-1, p = 0.17). Conclusion: The possibility of including hypoxia only in the recovery intervals as an additional stimulus to the training, without decreasing the quality of the training, was evidenced. Level of Evidence II; Randomized Clinical Trial of Minor Quality.


RESUMEN Introducción: El entrenamiento tradicional en hipoxia intermitente mejora el rendimiento deportivo tras cortos periodos de exposición, sin embargo, la exposición aguda a la hipoxia intermitente conduce a una disminución de la intensidad del entrenamiento y de la calidad técnica. La solución para superar estos efectos negativos puede ser realizar los esfuerzos en normoxia y los intervalos entre esfuerzos en hipoxia, manteniendo la calidad del entrenamiento y los beneficios de la hipoxia. Objetivo: Este estudio pretendía evaluar las respuestas fisiológicas agudas a la exposición a la hipoxia durante la recuperación entre esfuerzos de alta intensidad. Materiales y métodos: Estudio aleatorizado, a ciegas y controlado con placebo. Dieciséis hombres realizaron una prueba de ejercicio graduado para determinar su intensidad máxima y dos sesiones de entrenamiento por intervalos de alta intensidad. Los intervalos de entrenamiento podían ser en hipoxia (HRT), FIO2: 0,136 o normoxia (NRT), FIO2: 0,209. Durante el intervalo de dos minutos entre los diez esfuerzos de un minuto, se midieron constantemente la saturación periférica de oxígeno (SpO2), la frecuencia cardiaca (FC), el lactato en sangre ([La]) y la glucemia ([Glu]). Resultados: Hubo diferencias en la FC (TRN = 120 ± 14 lpm; TRH = 129 ± 13 lpm, p < 0,01) y la SpO2 (TRN = 96,9 ± 1,0%; TRH = 86,2 ± 3,5%, p < 0,01). No hubo diferencias en [La] y [Glu] TRN (4,4 ± 1,7 mmol.l-1; 3,9 ± 0,5 mmol.l-1) y TRH (5,2 ± 2,0 mmol.l-1; 4,0 ± 0,8 mmol.l-1, p = 0,17). Conclusión: Se evidenció la posibilidad de incluir hipoxia sólo en los intervalos de recuperación como estímulo adicional al entrenamiento sin disminuir la calidad del mismo. Nivel de Evidencia II; Ensayo Clínico Aleatorizado de Baja Calidad.


RESUMO Introdução: O treinamento de hipóxia intermitente tradicional melhora o desempenho esportivo após curtos períodos de exposição, porém a exposição aguda à hipóxia intermitente leva à diminuição da intensidade do treinamento e da qualidade técnica. A solução para superar esses efeitos negativos pode ser realizar esforços em normóxia e os intervalos entre os esforços em hipóxia, mantendo a qualidade do treinamento e os benefícios da hipóxia. Objetivo: Este estudo teve como objetivo avaliar as respostas fisiológicas agudas à exposição de hipóxia durante a recuperação entre esforços de alta intensidade. Materiais e métodos: Estudo aleatório e one-blinded, com efeito placebo controlado. Dezesseis homens realizaram um teste de exercício graduado para determinar sua intensidade máxima e duas sessões de treinamento intervalado de alta intensidade. Os intervalos de treinamento podem ser em hipóxia (TRH), FIO2: 0,136 ou normóxia (TRN), FIO2: 0,209. Durante os dois minutos de intervalo entre os dez esforços de um minuto, foram medidos constantemente a saturação periférica de oxigênio (SpO2), frequência cardíaca (FC), lactato sanguíneo ([La]), glicemia ([Glu]). Resultados: Houve diferenças na FC (TRN = 120 ± 14 bpm; TRH = 129 ± 13 bpm, p <0,01) e SpO2 (TRN = 96,9 ± 1,0%; TRH = 86,2 ± 3,5%, p <0,01). Sem diferenças em [La] e [Glu] TRN (4,4 ± 1,7 mmol.l-1; 3,9 ± 0,5 mmol.l-1) e TRH (5,2 ± 2,0 mmol.l-1; 4,0 ± 0,8 mmol.l-1, p = 0,17). Conclusão: Evidenciou-se a possibilidade de incluir a hipóxia apenas nos intervalos de recuperação como um estímulo adicional ao treinamento, sem diminuir a qualidade do treinamento. Nível de Evidência II; Estudo Clínico Randomizado de Menor Qualidade.

5.
Int J Exerc Sci ; 15(7): 599-615, 2022.
Article in English | MEDLINE | ID: mdl-35990709

ABSTRACT

The anaerobic metabolism determination is complex and the applied methodologies present limitations. Thus, the purpose of this study was to investigate the effects of different calculations (MAOD vs. AOD) on the anaerobic contribution using the dynamic knee extension. Twenty-four male were recruited [Mean (SD); age 27 (1) years, body mass 90 (3) kg, height 181 (2) cm]. This study was divided into two independent experiments (EXP1: one-legged; EXP2: two-legged). In both experiments, it was performed a graded exercise test to determine maximal power (MP-GXT); 2-4 submaximal efforts (VO2-intensity relationship); and an exhaustive effort. The theoretical energy demand for the exhaustive effort (TEDex) was constructed from the submaximal efforts. Therefore, MAOD was assumed as the difference between the TEDex and the accumulated VO2 (AVO2). In contrast, the energy demand for AOD was calculated as the product between VO2 at the end of exercise and time to exhaustion (TEDaod). Thus, AOD was assumed as the difference between TEDaod and AVO2. Bayesian paired t-test was used to compare the differences between the applied methods. Also, correlations between the anaerobic indices and performance were verified. In EXP1, AOD was higher than MAOD [1855 (741) vs. 434 (245); BF10 = 2925; ES = 2.5]. In contrast, in EXP2, MAOD was higher than AOD [2832 (959) vs. 1636 (549); BF10 = 3.33; ES = 1.4]. Also, AOD was correlated to performance (r = .59; BF10 = 4.38). We concluded that MAOD and AOD are a distinct phenomenon and must be utilized according to the exercise model.

6.
J Sports Med Phys Fitness ; 61(4): 519-526, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33092326

ABSTRACT

BACKGROUND: Backward extrapolation technique (BE) was used to estimate V̇O2 from postexercise measuring, eliminating oronasal mask (OM) during the efforts. Despite its advantage, literature presents discrepancy in applied methods. Thus, the first aim of this study was to compare different mathematical criteria to estimate values of V̇O2 during a supramaximal effort (V̇O2PEAK), while the second aim was to verify the effects of OM on cycling performance. METHODS: Twenty-four male cyclists (35±6 years, 81.3±8.9 kg, 180±6 cm) performed three days of tests, with at least 24 h of interval between each test. Firstly, a graded exercise test was applied to determine V̇O2max and your correspondent intensity (MAP). The second and the third day were destined to supramaximal efforts at 120% of MAP, performed with (Supramask) and without (Suprabe) oronasal mask (OM) in a randomized order. After Suprabe, OM was coupled, and BE was applied. Sixty-six values of V̇O2 were obtained based on a linear regression fitting. RESULTS: V̇O2peak can be estimated using different curve lengths. However, only curves between 20 and 60 s with extrapolation to 3 s or lesser shows at least one consistent criterion. The 60 s curve extrapoled to -3 s was the most accurate criteria (P=0.723; ES=-0.055; r=0.824; Bias=-0.36 and LoA=7.72 mL.kg.min-1). Performance was not impaired with OM and was similar in both condition (P=0.84, ES=0.04). CONCLUSIONS: We conclude that it was possible to accurately estimate V̇O2 values of a supramaximal effort without any respiratory apparatus with a time-efficient analysis. Therefore, we recommended the use of a 60 seconds V̇O2 curve analysis with a negative extrapolation for 3 seconds.


Subject(s)
Bicycling/physiology , Oxygen Consumption/physiology , Adult , Exercise , Exercise Test/methods , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...