Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Dairy Sci ; 101(11): 10374-10382, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30172410

ABSTRACT

Polymorphonuclear leukocytes (PMNL) are the first responders upon pathogen invasion and hence play an important role in inflammatory and immune responses. Rumen-protected methionine (MET) and choline (CHOL) during the peripartal period affect the immune response and inflammatory status in dairy cows to different extents. We aimed to examine the effect of MET and CHOL supply on expression of genes regulating key PMNL functions and associations with whole-blood immune challenge. Thirty multiparous Holstein cows from a larger cohort randomly assigned from -21 to 30 d relative to parturition to a basal control (CON) diet, CON plus MET at a rate of 0.08% of dry matter, or CON plus CHOL at 60 g/d were used. Blood was sampled at -10, 7, and 30 d relative to parturition for inflammatory biomarker analyses and PMNL isolation. Neutrophil and monocyte phagocytosis and oxidative burst in vitro were assessed in whole blood at 1, 7, and 28 d. Although neutrophil and monocyte phagocytosis did not differ, oxidative burst in neutrophils and monocytes was greater in MET-supplemented cows relative to CON cows. Compared with CON, PMNL adhesion and migration-related genes (ITGAM, ITGB2, ITGA4) were downregulated in response to MET and CHOL. Expression of CADM1 and SELL was also lower in MET-supplemented cows compared with CON cows but not in CHOL cows. In contrast, compared with CON cows, the expression of ICAM1 was lower in CHOL but not MET cows. Similar to adhesion and migration-related genes, cows receiving MET- or CHOL-supplemented diets had lower expression of inflammation-related genes (IL1ß, IL10RA, NFKB1, STAT3, TLR2). However, expression of IRAK1 and TLR4 was lower in MET- but not CHOL-supplemented cows. Plasma taurine concentration was greater in MET cows compared with CHOL and CON cows, suggesting a better redox status in plasma. In agreement with plasma taurine, oxidative stress-related genes (CBS, CTH, GPX1, GSS, SOD2) in PMNL were lower in response to MET and to CHOL supply. Overall, immunometabolic gene expression profile and blood biomarker analyses suggest an overall better redox status in PMNL during the transition period in response to MET and CHOL supply. These adaptations in PMNL might be beneficial for mounting a better bactericidal response upon challenge.


Subject(s)
Cattle/physiology , Choline/pharmacology , Dietary Supplements , Methionine/pharmacology , Animals , Biomarkers/blood , Cattle/immunology , Diet/veterinary , Female , Gene Expression Regulation , Inflammation/veterinary , Neutrophils/immunology , Oxidative Stress , Parturition , Pregnancy , Random Allocation , Rumen/metabolism
2.
J Dairy Sci ; 100(8): 6720-6732, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28551192

ABSTRACT

The liver functionality index (LFI) represents an assessment of transition cow metabolic health by measuring changes in biomarkers associated with liver plasma protein synthesis (albumin), lipoprotein synthesis (cholesterol), and heme catabolism (bilirubin). The present analysis was conducted to determine the role of peripartal rumen-protected Met or choline (CHOL) supplementation on LFI groupings, and to assess relationships with performance, inflammation, oxidative stress status, and plasma AA profiles. A cohort of 40 multiparous Holstein cows that were part of a randomized complete block design with 2 × 2 factorial arrangement of Met (Smartamine M, Adisseo NA, Alpharetta, GA) and CHOL (ReaShure, Balchem Inc., New Hampton, NY) level (with or without) were used. From -21 d to calving, cows received the same close-up diet and were assigned randomly to each treatment. From calving to 30 d, cows were on the same postpartal diet and continued to receive the same treatments until 30 d. Addition of Met was adjusted daily at 0.08% dry matter of diet and CHOL was fed at 60 g/cow per day. Liver (-10, 7, 20, and 30 d) and blood (-10, 4, 8, 20, and 30 d) samples were harvested for biomarker analyses. Cows were ranked retrospectively and assigned to low (LLFI, LFI <0) and high (HLFI, LFI >0) LFI groups regardless of Met or CHOL supplementation. Compared with cows in LLFI, close-up and lactation DMI, milk yield, milk fat yield, and milk protein yield were greater in HLFI cows. As expected, cows in LLFI had lower plasma cholesterol and albumin but greater bilirubin concentrations around parturition. Plasma haptoglobin concentration was also lower in HLFI cows, but plasma paraoxonase and hepatic total and reduced hepatic glutathione concentrations were greater. Although higher concentrations of His, Met, and Trp, as well as a tendency for greater Ile, were observed in HLFI cows, overall essential AA concentrations did not differ with LFI status. In contrast, overall concentrations of nonessential AA were greater in HLFI cows due to greater circulating concentrations of Ala, Asn, Gln, Pro, and Ser. Similarly, overall concentrations of total AA and total sulfur-containing compounds were greater in cows with HLFI. Feeding Met compared with CHOL led to a tendency for more cows classified as HLFI. Overall, results support the broader application of the LFI in the management of transition cows. In that context, the fact that precalving concentrations of compounds such as reduced glutathione, total sulfur-containing compounds, Met, Tau, and homocysteine differed between HLFI and LLFI independent of Met or CHOL feeding also underscores their potential for monitoring cows that might be at a greater risk of developing health problems after calving. Further studies on the applicability of these biomarkers to monitor transition success appears warranted.


Subject(s)
Amino Acids/blood , Choline/administration & dosage , Liver/physiology , Methionine/administration & dosage , Oxidative Stress , Rumen/metabolism , Animal Nutritional Physiological Phenomena , Animals , Cattle , Diet/veterinary , Dietary Supplements , Female , Lactation , Milk , Peripartum Period/blood , Pregnancy
3.
J Dairy Sci ; 100(5): 3958-3968, 2017 May.
Article in English | MEDLINE | ID: mdl-28318590

ABSTRACT

Methionine, together with Lys, is the most limiting AA for milk production in dairy cows. Besides its crucial role in milk production, Met and its derivate metabolites (e.g., glutathione, taurine, polyamines) are well-known immunonutrients in nonruminants, helping support and boost immune function and activity. In the present study, the effects of Met or choline, as its precursor, were investigated using an ex vivo whole blood challenge. The study involved 33 multiparous Holstein cows (from a larger cohort with a factorial arrangement of treatments) assigned from d -21 to +30 relative to parturition to a basal control (CON) diet, CON plus rumen-protected Met (MET, Smartamine M, Adisseo NA, Alpharetta, GA) at a rate of 0.08% of dry matter, or CON plus rumen-protected choline (CHOL, ReaShure, Balchem Inc., New Hampton, NY) at 60 g/d. Blood was sampled on d -15, -7, 2, 7, and 20 for ex vivo lipopolysaccharide (LPS) challenge, and on d 1, 4, 14, and 28 relative to parturition for phagocytosis and oxidative burst assays. The MET cows had greater energy-corrected milk production and milk protein content. Overall, IL-6 response to LPS increased around parturition, whereas IL-1ß remained constant, casting doubt on the existence of systemic immunosuppression in the peripartal period. Supplementation with MET dampened the postpartal blood response to LPS (lower IL-1ß), while improving postpartum neutrophil and monocyte phagocytosis capacity and oxidative burst activity. In contrast, CHOL supplementation increased monocyte phagocytosis capacity. Overall, the data revealed a peripartal immune hyper-response, which appeared to have been mitigated by MET supplementation. Both MET and CHOL effectively improved immune function; however, MET affected the immune and antioxidant status before parturition, which might have been beneficial to prepare the cow to respond to metabolic challenges after parturition. These results provide insights on potential differences in the immunomodulatory action of methionine and choline in dairy cows. As such, the effects observed could have implications for ration formulation and dietary strategies.


Subject(s)
Methionine/metabolism , Rumen/metabolism , Animals , Cattle , Choline/pharmacology , Diet/veterinary , Dietary Supplements , Female , Lactation , Liver/metabolism , Milk/metabolism
4.
J Dairy Sci ; 99(11): 8956-8969, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27592438

ABSTRACT

The immunometabolic status of peripartal cows is altered due to changes in liver function, inflammation, and oxidative stress. Nutritional management during this physiological state can affect the biological components of immunometabolism. The objectives of this study were to measure concentrations of biomarkers in plasma, liver tissue, and milk, and also polymorphonuclear leukocyte function to assess the immunometabolic status of cows supplemented with rumen-protected methionine (Met) or choline (CHOL). Forty-eight multiparous Holstein cows were used in a randomized complete block design with 2×2 factorial arrangement of Met (Smartamine M, Adisseo NA, Alpharetta, GA) and CHOL (ReaShure, Balchem Inc., New Hampton, NY) level (with or without). Treatments (12 cows each) were control (CON), no Met or CHOL; CON and Met (SMA); CON and CHOL (REA); and CON and Met and CHOL (MIX). From -50 to -21d before expected calving, all cows received the same diet [1.40Mcal of net energy for lactation (NEL)/kg of DM] with no Met or CHOL. From -21d to calving, cows received the same close-up diet (1.52Mcal of NEL/kg of DM) and were assigned randomly to each treatment. From calving to 30d, cows were on the same postpartal diet (1.71Mcal of NEL/kg of DM) and continued to receive the same treatments until 30d. The Met supplementation was adjusted daily at 0.08% DM of diet, and CHOL was supplemented at 60g/cow per day. Liver (-10, 7, 21, and 30d) and blood (-10, 4, 8, 20, and 30d) samples were harvested for biomarker analyses. Neutrophil and monocyte phagocytosis and oxidative burst were assessed at d 1, 4, 14, and 28d. The Met-supplemented cows tended to have greater plasma paraoxonase. Greater plasma albumin and IL-6 as well as a tendency for lower haptoglobin were detected in Met- but not CHOL-supplemented cows. Similarly, cows fed Met compared with CHOL had greater concentrations of total and reduced glutathione (a potent intracellular antioxidant) in liver tissue. Upon a pathogen challenge in vitro, blood polymorphonuclear leukocyte phagocytosis capacity and oxidative burst activity were greater in Met-supplemented cows. Overall, liver and blood biomarker analyses revealed favorable changes in liver function, inflammation status, and immune response in Met-supplemented cows.


Subject(s)
Choline/pharmacology , Methionine/pharmacology , Peripartum Period/drug effects , Rumen/drug effects , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Antioxidants/pharmacology , Aryldialkylphosphatase/blood , Biomarkers/blood , Cattle , Choline/blood , Diet/veterinary , Dietary Supplements , Female , Glutathione/blood , Inflammation/drug therapy , Inflammation/veterinary , Interleukin-6/blood , Liver/drug effects , Liver/metabolism , Methionine/blood , Oxidative Stress/drug effects , Peripartum Period/blood , Rumen/metabolism , Serum Albumin/metabolism
5.
J Dairy Sci ; 99(11): 8716-8732, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27638261

ABSTRACT

The onset of lactation in dairy cows is characterized by high output of methylated compounds in milk when sources of methyl group are in short supply. Methionine and choline (CHOL) are key methyl donors and their availability during this time may be limiting for milk production, hepatic lipid metabolism, and immune function. Supplementing rumen-protected Met and CHOL may improve overall performance and health of transition cows. The objective of this study was to evaluate the effect of supplemental rumen-protected Met and CHOL on performance and health of transition cows. Eighty-one multiparous Holstein cows were used in a randomized, complete, unbalanced block design with 2×2 factorial arrangement of Met (Smartamine M, Adisseo NA, Alpharetta, GA) and CHOL (ReaShure, Balchem Inc., New Hampton, NY) inclusion (with or without). Treatments (20 to 21 cows each) were control (CON), CON+Met (SMA), CON+CHOL (REA), and CON+Met+CHOL (MIX). From -50 to -21d before expected calving, all cows received the same diet (1.40Mcal of NEL/kg of DM) with no Met or CHOL. From -21d to calving, cows received the same close-up diet (1.52Mcal of NEL/kg of DM) and were assigned randomly to treatments (CON, SMA, REA, or MIX) supplied as top dresses. From calving to 30 DIM, cows were fed the same postpartal diet (1.71Mcal of NEL/kg of DM) and continued to receive the same treatments through 30 DIM. The Met supplementation was adjusted daily at 0.08% DM of diet and REA was supplemented at 60g/d. Incidence of clinical ketosis and retained placenta tended to be lower in Met-supplemented cows. Supplementation of Met (SMA, MIX) led to greater DMI compared with other treatments (CON, REA) in both close-up (14.3 vs. 13.2kg/d, SEM 0.3) and first 30d postpartum (19.2 vs. 17.2kg/d, SEM 0.6). Cows supplemented with Met (SMA, MIX) had greater yields of milk (44.2 vs. 40.4kg/d, SEM 1.2), ECM (44.6 vs. 40.5kg/d, SEM 1.0), and FCM (44.6 vs. 40.8kg/d, SEM 1.0) compared with other (CON, REA) treatments. Milk fat content did not differ in response to Met or CHOL. However, milk protein content was greater in Met-supplemented (3.32% vs. 3.14%, SEM 0.04%) but not CHOL-supplemented (3.27 vs. 3.19%, SEM 0.04%) cows. Supplemental CHOL led to greater blood glucose and insulin concentrations with lower glucose:insulin ratio. No Met or CHOL effects were detected for blood fatty acids or BHB, but a Met × time effect was observed for fatty acids due to higher concentrations on d 20. Results from the present study indicate that peripartal supplementation of rumen-protected Met but not CHOL has positive effects on cow performance.


Subject(s)
Methionine/metabolism , Rumen/metabolism , Animals , Cattle , Choline/pharmacology , Diet/veterinary , Dietary Supplements , Female , Lactation , Milk/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...