Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurosci ; 16: 913618, 2022.
Article in English | MEDLINE | ID: mdl-35774561

ABSTRACT

In this paper, we report an approach to design nanolayered memristive compositions based on TiO2/Al2O3 bilayer structures with analog non-volatile and volatile tuning of the resistance. The structure of the TiO2 layer drives the physical mechanism underlying the non-volatile resistance switching, which can be changed from electronic to ionic, enabling the synaptic behavior emulation. The presence of the anatase phase in the amorphous TiO2 layer induces the resistive switching mechanism due to electronic processes. In this case, the switching of the resistance within the range of seven orders of magnitude is experimentally observed. In the bilayer with amorphous titanium dioxide, the participation of ionic processes in the switching mechanism results in narrowing the tuning range down to 2-3 orders of magnitude and increasing the operating voltages. In this way, a combination of TiO2/Al2O3 bilayers with inert electrodes enables synaptic behavior emulation, while active electrodes induce the neuronal behavior caused by cation density variation in the active Al2O3 layer of the structure. We consider that the proposed approach could help to explore the memristive capabilities of nanolayered compositions in a more functional way, enabling implementation of artificial neural network algorithms at the material level and simplifying neuromorphic layouts, while maintaining all benefits of neuromorphic architectures.

2.
Sensors (Basel) ; 22(4)2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35214428

ABSTRACT

Approaches are being developed to create composite materials with a fractal-percolation structure based on intercalated porous matrices to increase the sensitivity of adsorption gas sensors. Porous silicon, nickel-containing porous silicon, and zinc oxide have been synthesized as materials for such structures. Using the impedance spectroscopy method, it has been shown that the obtained materials demonstrate high sensitivity to organic solvent vapors and can be used in gas sensors. A model is proposed that explains the high sensitivity and inductive nature of the impedance at low frequencies, considering the structural features and fractal-percolation properties of the obtained oxide materials.

3.
Micromachines (Basel) ; 13(1)2022 Jan 08.
Article in English | MEDLINE | ID: mdl-35056262

ABSTRACT

The article presents the results of the development and study of a combined circuitry (compact) model of thin metal oxide films based memristive elements, which makes it possible to simulate both bipolar switching processes and multilevel tuning of the memristor conductivity taking into account the statistical variability of parameters for both device-to-device and cycle-to-cycle switching. The equivalent circuit of the memristive element and the equation system of the proposed model are considered. The software implementation of the model in the MATLAB has been made. The results of modeling static current-voltage characteristics and transient processes during bipolar switching and multilevel turning of the conductivity of memristive elements are obtained. A good agreement between the simulation results and the measured current-voltage characteristics of memristors based on TiOx films (30 nm) and bilayer TiO2/Al2O3 structures (60 nm/5 nm) is demonstrated.

4.
Polymers (Basel) ; 13(23)2021 Nov 26.
Article in English | MEDLINE | ID: mdl-34883640

ABSTRACT

Flexible polymer-based actuators, often also called artificial muscles, are an essential part of biomimetic systems that mimic the movement principles of animal world creatures. The most used electrode material to force the actuator move is an ensemble of noble metal nanoparticles in the electroactive polymer surface. Noble metal electrodes have enough electrical conductivity and elasticity and are not subjected to oxidation. However, high cost of such electrodes and their tendency to cracking dictate the need for searching other materials, primarily carbon ones. The review considers several options for this search. For example, carbon nanotubes and graphene have excellent properties at the level of a single individually taken nanotube or graphene sheet. However, conservation of these properties in structurally imperfect film electrodes requires a separate study. In addition, there are problems of compatibility of such electrodes with the polymers that requires cumbersome technologies, e.g., hot pressing, which complicates the production of the actuator as a whole. The review concerns the technology options of manufacturing actuators and the results obtained on their basis, both including hot pressing and avoiding this procedure. In particular, the required level of the graphene oxide reduction in hydrazine provides sufficient adhesion at rather high electrical conductivity of the graphene film. The ability to simultaneous achieving these properties is a nontrivial result, providing the same level of actuation as with expensive noble metal electrodes. Actuators that additionally require greater lifetime resource should be obtained in other ways. Among them are using the graphdiyne electrodes and laser processing of the graphene electrodes.

5.
Nanomaterials (Basel) ; 11(12)2021 Dec 07.
Article in English | MEDLINE | ID: mdl-34947670

ABSTRACT

Scanning tunneling spectroscopy in ultrahigh vacuum conditions and conductive atomic-force microscopy in ambient conditions were used to study local electroresistive properties of ferroelectric tunnel junctions SrTiO3/La0.7Sr0.3MnO3/BaTiO3. Interestingly, experimental current-voltage characteristics appear to strongly depend on the measurement technique applied. It was found that screening conditions of the polarization charges at the interface with a top electrode differ for two scanning probe techniques. As a result, asymmetry of the tunnel barrier height for the opposite ferroelectric polarization orientations may be influenced by the method applied to study the local tunnel electroresistance. Our observations are well described by the theory of electroresistance in ferroelectric tunnel junctions. Based on this, we reveal the main factors that influence the polarization-driven local resistive properties of the device under study. Additionally, we propose an approach to enhance asymmetry of ferroelectric tunnel junctions during measurement. While keeping the high locality of scanning probe techniques, it helps to increase the difference in the value of tunnel electroresistance for the opposite polarization orientations.

6.
Micromachines (Basel) ; 12(12)2021 Dec 16.
Article in English | MEDLINE | ID: mdl-34945416

ABSTRACT

Physical mechanisms underlying the multilevel resistive tuning over seven orders of magnitude in structures based on TiO2/Al2O3 bilayers, sandwiched between platinum electrodes, are responsible for the nonlinear dependence of the conductivity of intermediate resistance states on the writing voltage. To improve the linearity of the electric-field resistance tuning, we apply a contact engineering approach. For this purpose, platinum top electrodes were replaced with aluminum and copper ones to induce the oxygen-related electrochemical reactions at the interface with the Al2O3 switching layer of the structures. Based on experimental results, it was found that electrode material substitution provokes modification of the physical mechanism behind the resistive switching in TiO2/Al2O3 bilayers. In the case of aluminum electrodes, a memory window has been narrowed down to three orders of magnitude, while the linearity of resistance tuning was improved. For copper electrodes, a combination of effects related to metal ion diffusion with oxygen vacancies driven resistive switching was responsible for a rapid relaxation of intermediate resistance states in TiO2/Al2O3 bilayers.

SELECTION OF CITATIONS
SEARCH DETAIL
...