Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 5051, 2023 08 19.
Article in English | MEDLINE | ID: mdl-37598220

ABSTRACT

Histone deacetylases are important epigenetic regulators that have been reported to play essential roles in cancer stem cell functions and are promising therapeutic targets in many cancers including glioblastoma. However, the functionally relevant roles of specific histone deacetylases, in the maintenance of key self-renewal and growth characteristics of brain tumour stem cell (BTSC) sub-populations of glioblastoma, remain to be fully resolved. Here, using pharmacological inhibition and genetic loss and gain of function approaches, we identify HDAC2 as the most relevant histone deacetylase for re-organization of chromatin accessibility resulting in maintenance of BTSC growth and self-renewal properties. Furthermore, its specific interaction with the transforming growth factor-ß pathway related proteins, SMAD3 and SKI, is crucial for the maintenance of tumorigenic potential in BTSCs in vitro and in orthotopic xenograft models. Inhibition of HDAC2 activity and disruption of the coordinated mechanisms regulated by the HDAC2-SMAD3-SKI axis are thus promising therapeutic approaches for targeting BTSCs.


Subject(s)
Brain Stem Neoplasms , Glioblastoma , Humans , Glioblastoma/genetics , Brain , Histone Deacetylases/genetics , Neoplastic Stem Cells , Epigenesis, Genetic , Smad3 Protein/genetics , Histone Deacetylase 2/genetics
2.
Sci Adv ; 7(45): eabh2148, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34739319

ABSTRACT

Brain tumor­initiating cells (BTICs) drive glioblastoma growth through not fully understood mechanisms. Here, we found that about 8% of cells within the human glioblastoma microenvironment coexpress programmed cell death 1 (PD-1) and BTIC marker. Gain- or loss-of-function studies revealed that tumor-intrinsic PD-1 promoted proliferation and self-renewal of BTICs. Phosphorylation of tyrosines within the cytoplasmic tail of PD-1 recruited Src homology 2­containing phosphatase 2 and activated the nuclear factor kB in BTICs. Notably, the tumor-intrinsic promoting effects of PD-1 did not require programmed cell death ligand 1(PD-L1) ligation; thus, the therapeutic antibodies inhibiting PD-1/PD-L1 interaction could not overcome the growth advantage of PD-1 in BTICs. Last, BTIC-intrinsic PD-1 accelerated intracranial tumor growth, and this occurred in mice lacking T and B cells. These findings point to a critical role for PD-1 in BTICs and uncover a nonimmune resistance mechanism of patients with glioblastoma to PD-1­ or PD-L1­blocking therapies.

3.
Neuro Oncol ; 23(9): 1509-1522, 2021 09 01.
Article in English | MEDLINE | ID: mdl-33864084

ABSTRACT

BACKGROUND: Telomerase reverse transcriptase (TERT) is essential for tumor proliferation, including in low-grade oligodendrogliomas (LGOGs). Since TERT is silenced in normal cells, it is also a therapeutic target. Therefore, noninvasive methods of imaging TERT are needed. Here, we examined the link between TERT expression and metabolism in LGOGs, with the goal of leveraging this information for noninvasive magnetic resonance spectroscopy (MRS)-based metabolic imaging of LGOGs. METHODS: Immortalized normal human astrocytes with doxycycline-inducible TERT silencing, patient-derived LGOG cells, orthotopic tumors, and LGOG patient biopsies were studied to determine the mechanistic link between TERT expression and glucose metabolism. The ability of hyperpolarized [U-13C, U-2H]-glucose to noninvasively assess TERT expression was tested in live cells and orthotopic tumors. RESULTS: TERT expression was associated with elevated glucose flux through the pentose phosphate pathway (PPP), elevated NADPH, which is a major product of the PPP, and elevated glutathione, which is maintained in a reduced state by NADPH. Importantly, hyperpolarized [U-13C, U-2H]-glucose metabolism via the PPP noninvasively reported on TERT expression and response to TERT inhibition in patient-derived LGOG cells and orthotopic tumors. Mechanistically, TERT acted via the sirtuin SIRT2 to upregulate the glucose transporter GLUT1 and the rate-limiting PPP enzyme glucose-6-phosphate dehydrogenase. CONCLUSIONS: We have, for the first time, leveraged a mechanistic understanding of TERT-associated metabolic reprogramming for noninvasive imaging of LGOGs using hyperpolarized [U-13C, U-2H]-glucose. Our findings provide a novel way of imaging a hallmark of tumor immortality and have the potential to improve diagnosis and treatment response assessment for LGOG patients.


Subject(s)
Oligodendroglioma , Telomerase , Glucose , Humans , Magnetic Resonance Spectroscopy , Oligodendroglioma/diagnostic imaging , Oligodendroglioma/genetics , Pentose Phosphate Pathway , Telomerase/genetics , Telomerase/metabolism
4.
Elife ; 102021 01 11.
Article in English | MEDLINE | ID: mdl-33427645

ABSTRACT

Chromatin accessibility discriminates stem from mature cell populations, enabling the identification of primitive stem-like cells in primary tumors, such as glioblastoma (GBM) where self-renewing cells driving cancer progression and recurrence are prime targets for therapeutic intervention. We show, using single-cell chromatin accessibility, that primary human GBMs harbor a heterogeneous self-renewing population whose diversity is captured in patient-derived glioblastoma stem cells (GSCs). In-depth characterization of chromatin accessibility in GSCs identifies three GSC states: Reactive, Constructive, and Invasive, each governed by uniquely essential transcription factors and present within GBMs in varying proportions. Orthotopic xenografts reveal that GSC states associate with survival, and identify an invasive GSC signature predictive of low patient survival, in line with the higher invasive properties of Invasive state GSCs compared to Reactive and Constructive GSCs as shown by in vitro and in vivo assays. Our chromatin-driven characterization of GSC states improves prognostic precision and identifies dependencies to guide combination therapies.


Subject(s)
Cell Self Renewal , Chromatin/metabolism , Glioblastoma/secondary , Neoplastic Stem Cells/physiology , Cell Line, Tumor , Female , Humans , Male , Single-Cell Analysis
5.
Nat Commun ; 12(1): 92, 2021 01 04.
Article in English | MEDLINE | ID: mdl-33397920

ABSTRACT

Telomere maintenance is a universal hallmark of cancer. Most tumors including low-grade oligodendrogliomas use telomerase reverse transcriptase (TERT) expression for telomere maintenance while astrocytomas use the alternative lengthening of telomeres (ALT) pathway. Although TERT and ALT are hallmarks of tumor proliferation and attractive therapeutic targets, translational methods of imaging TERT and ALT are lacking. Here we show that TERT and ALT are associated with unique 1H-magnetic resonance spectroscopy (MRS)-detectable metabolic signatures in genetically-engineered and patient-derived glioma models and patient biopsies. Importantly, we have leveraged this information to mechanistically validate hyperpolarized [1-13C]-alanine flux to pyruvate as an imaging biomarker of ALT status and hyperpolarized [1-13C]-alanine flux to lactate as an imaging biomarker of TERT status in low-grade gliomas. Collectively, we have identified metabolic biomarkers of TERT and ALT status that provide a way of integrating critical oncogenic information into non-invasive imaging modalities that can improve tumor diagnosis and treatment response monitoring.


Subject(s)
Brain Neoplasms/genetics , Telomere Homeostasis , Telomere/metabolism , Alanine/metabolism , Animals , Biomarkers, Tumor/metabolism , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Carbon Isotopes/metabolism , Cell Line, Tumor , Genetic Engineering , Glioma/genetics , Glioma/metabolism , Glioma/pathology , Lactic Acid/metabolism , Male , Metabolome , Models, Biological , Neoplasm Grading , Neoplasm Proteins/metabolism , Proton Magnetic Resonance Spectroscopy , Pyruvic Acid/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats, Nude , Telomerase/genetics , Telomerase/metabolism , Xenograft Model Antitumor Assays
6.
Nat Cancer ; 2(2): 157-173, 2021 02.
Article in English | MEDLINE | ID: mdl-35122077

ABSTRACT

Glioblastomas harbor diverse cell populations, including rare glioblastoma stem cells (GSCs) that drive tumorigenesis. To characterize functional diversity within this population, we performed single-cell RNA sequencing on >69,000 GSCs cultured from the tumors of 26 patients. We observed a high degree of inter- and intra-GSC transcriptional heterogeneity that could not be fully explained by DNA somatic alterations. Instead, we found that GSCs mapped along a transcriptional gradient spanning two cellular states reminiscent of normal neural development and inflammatory wound response. Genome-wide CRISPR-Cas9 dropout screens independently recapitulated this observation, with each state characterized by unique essential genes. Further single-cell RNA sequencing of >56,000 malignant cells from primary tumors found that the majority organize along an orthogonal astrocyte maturation gradient yet retain expression of founder GSC transcriptional programs. We propose that glioblastomas grow out of a fundamental GSC-based neural wound response transcriptional program, which is a promising target for new therapy development.


Subject(s)
Brain Neoplasms , Glioblastoma , Brain Neoplasms/genetics , Carcinogenesis/genetics , Glioblastoma/genetics , Humans , Neoplastic Stem Cells/metabolism
7.
Cancer Res ; 80(24): 5478-5490, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33106333

ABSTRACT

Cancer cells can metabolize glutamine to replenish TCA cycle intermediates, leading to a dependence on glutaminolysis for cell survival. However, a mechanistic understanding of the role that glutamine metabolism has on the survival of glioblastoma (GBM) brain tumor stem cells (BTSC) has not yet been elucidated. Here, we report that across a panel of 19 GBM BTSC lines, inhibition of glutaminase (GLS) showed a variable response from complete blockade of cell growth to absolute resistance. Surprisingly, BTSC sensitivity to GLS inhibition was a result of reduced intracellular glutamate triggering the amino acid deprivation response (AADR) and not due to the contribution of glutaminolysis to the TCA cycle. Moreover, BTSC sensitivity to GLS inhibition negatively correlated with expression of the astrocytic glutamate transporters EAAT1 and EAAT2. Blocking glutamate transport in BTSCs with high EAAT1/EAAT2 expression rendered cells susceptible to GLS inhibition, triggering the AADR and limiting cell growth. These findings uncover a unique metabolic vulnerability in BTSCs and support the therapeutic targeting of upstream activators and downstream effectors of the AADR pathway in GBM. Moreover, they demonstrate that gene expression patterns reflecting the cellular hierarchy of the tissue of origin can alter the metabolic requirements of the cancer stem cell population. SIGNIFICANCE: Glioblastoma brain tumor stem cells with low astrocytic glutamate transporter expression are dependent on GLS to maintain intracellular glutamate to prevent the amino acid deprivation response and cell death.


Subject(s)
Amino Acids/metabolism , Brain Neoplasms/metabolism , Glioblastoma/metabolism , Glutaminase/metabolism , Neoplastic Stem Cells/metabolism , Signal Transduction/drug effects , Astrocytes/metabolism , Benzeneacetamides/pharmacology , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Citric Acid Cycle/drug effects , Excitatory Amino Acid Transporter 1/metabolism , Excitatory Amino Acid Transporter 2/metabolism , Glioblastoma/pathology , Glutamic Acid/metabolism , Glutaminase/antagonists & inhibitors , Humans , Thiadiazoles/pharmacology
8.
Neurooncol Adv ; 2(1): vdaa020, 2020.
Article in English | MEDLINE | ID: mdl-32226941

ABSTRACT

BACKGROUND: The EGFR pathway is frequently mutated in glioblastoma (GBM). However, to date, EGFR therapies have not demonstrated efficacy in clinical trials. Poor brain penetration of conventional inhibitors, lack of patient stratification for EGFR status, and mechanisms of resistance are likely responsible for the failure of EGFR-targeted therapy. We aimed to address these elements in a large panel of molecularly diverse patient-derived GBM brain tumor stem cells (BTSCs). METHODS: In vitro growth inhibition and on-target efficacy of afatinib, pacritinib, or a combination were assessed by cell viability, neurosphere formation, cytotoxicity, limiting dilution assays, and western blotting. In vivo efficacy was assessed with mass spectrometry, immunohistochemistry, magnetic resonance imaging, and intracranial xenograft models. RESULTS: We show that afatinib and pacritinib decreased BTSC growth and sphere-forming capacity in vitro. Combinations of the 2 drugs were synergistic and abrogated the activation of STAT3 signaling observed upon EGFR inhibition in vitro and in vivo. We further demonstrate that the brain-penetrant EGFR inhibitor, afatinib, improved survival in EGFRvIII mt orthotopic xenograft models. However, upregulation of the oncogenic STAT3 signaling pathway was observed following afatinib treatment. Combined inhibition with 2 clinically relevant drugs, afatinib and pacritinib, synergistically decreased BTSC viability and abrogated this compensatory mechanism of resistance to EGFR inhibition. A significant decrease in tumor burden in vivo was observed with the combinatorial treatment. CONCLUSIONS: These data demonstrate that brain-penetrant combinatorial therapies targeting the EGFR and STAT3 signaling pathways hold therapeutic promise for GBM.

9.
Invest New Drugs ; 38(4): 1137-1144, 2020 08.
Article in English | MEDLINE | ID: mdl-31707687

ABSTRACT

The PI3K/AKT/mTOR pathway activation plays a central role in glioblastoma multiforme (GBM) development and progression, and in resistance to anti-cancer therapies. Inhibition of the PI3K pathway has been shown to sensitize cultured glioma cells and tumor xenografts to the effects of temozolomide (TMZ) and radiation. Vistusertib is an oral inhibitor of mTORC1/2 complexes. The primary objective of this Canadian Cancer Trials Group phase I study was to determine the recommended phase II dose (RP2D) of vistusertib in patients with GBM receiving TMZ at first progression following primary treatment. Vistusertib was administered at a starting dose of 100 mg bid 2 days on/5 days off weekly with TMZ 150 mg/m2 daily for 5 days/28-days cycle. Dose escalation was according to a 3 + 3 design. Secondary objectives included assessment of vistusertib safety and toxicity profile, and preliminary efficacy. 15 patients were enrolled in the study (median age 66 (range 51-77), females 8). Vistusertib 125 mg BID in combination with TMZ 150 mg/m2 daily for 5 days was well tolerated. Vistusertib treatment-related adverse events were generally grade 1-2, with the most frequently reported being fatigue, gastrointestinal symptoms, and rash. Of 13 response evaluable patients, 1 patient (8%) had a partial response ongoing at 7.6 months of follow-up, and 5 patients had stable disease (38%) as best response (median duration 9.6 months, range 3.7-not yet reached). Six-month progression-free survival (PFS) rate was 26.6%. Combination of vistusertib with TMZ in GBM patients at first recurrence demonstrated a favorable safety profile at the tested dose levels.


Subject(s)
Antineoplastic Agents/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Benzamides/administration & dosage , Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors , Mechanistic Target of Rapamycin Complex 2/antagonists & inhibitors , Morpholines/administration & dosage , Pyrimidines/administration & dosage , Temozolomide/administration & dosage , Aged , Antineoplastic Agents/adverse effects , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Benzamides/adverse effects , Female , Humans , Male , Maximum Tolerated Dose , Middle Aged , Morpholines/adverse effects , Pyrimidines/adverse effects , Temozolomide/adverse effects
10.
Cancers (Basel) ; 11(11)2019 Oct 24.
Article in English | MEDLINE | ID: mdl-31652994

ABSTRACT

In glioblastoma (GBM), brain tumor stem cells (BTSCs) encompass heterogenous populations of multipotent, self-renewing, and tumorigenic cells, which have been proposed to be at the root of therapeutic resistance and recurrence. While the functional significance of BTSC heterogeneity remains to be fully determined, we previously distinguished relatively quiescent stem-like precursor state from the more aggressive progenitor-like precursor state. In the present study, we hypothesized that progenitor-like BTSCs arise from stem-like precursors through a mesenchymal transition and drive post-treatment recurrence. We first demonstrate that progenitor-like BTSCs display a more mesenchymal transcriptomic profile. Moreover, we show that both mesenchymal GBMs and progenitor-like BTSCs are characterized by over-activated STAT3/EMT pathways and that SLUG is the primary epithelial to mesenchymal transition (EMT) transcription factor directly regulated by STAT3 in BTSCs. SLUG overexpression in BTSCs enhances invasiveness, promotes inflammation, and shortens survival. Importantly, SLUG overexpression in a quiescent stem-like BTSC line enhances tumorigenesis. Finally, we report that recurrence is associated with SLUG-induced transcriptional changes in both BTSCs and GBM patient samples. Collectively, our findings show that a STAT3-driven precursor state transition, mediated by SLUG, may prime BTSCs to initiate more aggressive mesenchymal recurrence. Targeting the STAT3/SLUG pathway may maintain BTSCs in a quiescent stem-like precursor state, delaying recurrence and improving survival in GBM.

11.
Proc Natl Acad Sci U S A ; 116(38): 19098-19108, 2019 09 17.
Article in English | MEDLINE | ID: mdl-31471491

ABSTRACT

Glioblastoma multiforme (GBM) is the most deadly brain tumor, and currently lacks effective treatment options. Brain tumor-initiating cells (BTICs) and orthotopic xenografts are widely used in investigating GBM biology and new therapies for this aggressive disease. However, the genomic characteristics and molecular resemblance of these models to GBM tumors remain undetermined. We used massively parallel sequencing technology to decode the genomes and transcriptomes of BTICs and xenografts and their matched tumors in order to delineate the potential impacts of the distinct growth environments. Using data generated from whole-genome sequencing of 201 samples and RNA sequencing of 118 samples, we show that BTICs and xenografts resemble their parental tumor at the genomic level but differ at the mRNA expression and epigenomic levels, likely due to the different growth environment for each sample type. These findings suggest that a comprehensive genomic understanding of in vitro and in vivo GBM model systems is crucial for interpreting data from drug screens, and can help control for biases introduced by cell-culture conditions and the microenvironment in mouse models. We also found that lack of MGMT expression in pretreated GBM is linked to hypermutation, which in turn contributes to increased genomic heterogeneity and requires new strategies for GBM treatment.


Subject(s)
Biomarkers, Tumor/genetics , Brain Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Genomics/methods , Glioblastoma/pathology , Neoplastic Stem Cells/pathology , Tumor Microenvironment/genetics , Adult , Aged , Aged, 80 and over , Animals , Apoptosis , Brain Neoplasms/genetics , Case-Control Studies , Cell Proliferation , DNA Methylation , Drug Resistance, Neoplasm , Female , Gene Expression Profiling , Glioblastoma/genetics , Humans , Male , Mice , Mice, SCID , Middle Aged , Neoplastic Stem Cells/metabolism , Transcriptome , Tumor Cells, Cultured , Whole Genome Sequencing , Xenograft Model Antitumor Assays
12.
Cell Rep ; 27(3): 971-986.e9, 2019 04 16.
Article in English | MEDLINE | ID: mdl-30995489

ABSTRACT

Glioblastoma therapies have remained elusive due to limitations in understanding mechanisms of growth and survival of the tumorigenic population. Using CRISPR-Cas9 approaches in patient-derived GBM stem cells (GSCs) to interrogate function of the coding genome, we identify actionable pathways responsible for growth, which reveal the gene-essential circuitry of GBM stemness and proliferation. In particular, we characterize members of the SOX transcription factor family, SOCS3, USP8, and DOT1L, and protein ufmylation as important for GSC growth. Additionally, we reveal mechanisms of temozolomide resistance that could lead to combination strategies. By reaching beyond static genome analysis of bulk tumors, with a genome-wide functional approach, we reveal genetic dependencies within a broad range of biological processes to provide increased understanding of GBM growth and treatment resistance.


Subject(s)
Brain Neoplasms/pathology , CRISPR-Cas Systems/genetics , Gene Editing/methods , Glioblastoma/pathology , Neoplastic Stem Cells/metabolism , Temozolomide/pharmacology , Animals , Brain Neoplasms/drug therapy , Brain Neoplasms/mortality , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Resistance, Neoplasm/genetics , Endopeptidases/genetics , Endopeptidases/metabolism , Endosomal Sorting Complexes Required for Transport/genetics , Endosomal Sorting Complexes Required for Transport/metabolism , Female , Gene Expression Regulation, Neoplastic/drug effects , Gene Library , Glioblastoma/drug therapy , Glioblastoma/mortality , Histone Methyltransferases/metabolism , Humans , Mice , Mice, SCID , Neoplastic Stem Cells/drug effects , Suppressor of Cytokine Signaling 3 Protein/genetics , Suppressor of Cytokine Signaling 3 Protein/metabolism , Survival Analysis , Temozolomide/therapeutic use , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism
13.
J Med Chem ; 62(5): 2651-2665, 2019 03 14.
Article in English | MEDLINE | ID: mdl-30776234

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive, incurable cancer with a 20% 1 year survival rate. While standard-of-care therapy can prolong life in a small fraction of cases, PDAC is inherently resistant to current treatments, and novel therapies are urgently required. Histone deacetylase (HDAC) inhibitors are effective in killing pancreatic cancer cells in in vitro PDAC studies, and although there are a few clinical studies investigating combination therapy including HDAC inhibitors, no HDAC drug or combination therapy with an HDAC drug has been approved for the treatment of PDAC. We developed an inhibitor of HDACs, AES-135, that exhibits nanomolar inhibitory activity against HDAC3, HDAC6, and HDAC11 in biochemical assays. In a three-dimensional coculture model, AES-135 kills low-passage patient-derived tumor spheroids selectively over surrounding cancer-associated fibroblasts and has excellent pharmacokinetic properties in vivo. In an orthotopic murine model of pancreatic cancer, AES-135 prolongs survival significantly, therefore representing a candidate for further preclinical testing.


Subject(s)
Benzamides/pharmacology , Histone Deacetylase Inhibitors/pharmacology , Hydrocarbons, Fluorinated/pharmacology , Hydroxamic Acids/chemistry , Pancreatic Neoplasms/drug therapy , Sulfonamides/pharmacology , Animals , Apoptosis/drug effects , Benzamides/chemistry , Benzamides/pharmacokinetics , Benzamides/therapeutic use , Cell Line, Tumor , Cell Proliferation/drug effects , Coculture Techniques , Disease Models, Animal , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/pharmacokinetics , Histone Deacetylase Inhibitors/therapeutic use , Humans , Hydrocarbons, Fluorinated/chemistry , Hydrocarbons, Fluorinated/pharmacokinetics , Hydrocarbons, Fluorinated/therapeutic use , Mice , Pancreatic Neoplasms/pathology , Sulfonamides/chemistry , Sulfonamides/pharmacokinetics , Sulfonamides/therapeutic use
14.
J Vis Exp ; (138)2018 08 29.
Article in English | MEDLINE | ID: mdl-30222149

ABSTRACT

Glioblastoma (GBM) is an aggressive brain tumor that is poorly controlled with the currently available treatment options. Key features of GBMs include rapid proliferation and pervasive invasion into the normal brain. Recurrence is thought to result from the presence of radio- and chemo-resistant brain tumor stem cells (BTSCs) that invade away from the initial cancerous mass and, thus, evade surgical resection. Hence, therapies that target BTSCs and their invasive abilities may improve the otherwise poor prognosis of this disease. Our group and others have successfully established and characterized BTSC cultures from GBM patient samples. These BTSC cultures demonstrate fundamental cancer stem cell properties such as clonogenic self-renewal, multi-lineage differentiation, and tumor initiation in immune-deficient mice. In order to improve on the current therapeutic approaches for GBM, a better understanding of the mechanisms of BTSC migration and invasion is necessary. In GBM, the study of migration and invasion is restricted, in part, due to the limitations of existing techniques which do not fully account for the in vitro growth characteristics of BTSCs grown as neurospheres. Here, we describe rapid and quantitative live-cell imaging assays to study both the migration and invasion properties of BTSCs. The first method described is the BTSC migration assay which measures the migration toward a chemoattractant gradient. The second method described is the BTSC invasion assay which images and quantifies a cellular invasion from neurospheres into a matrix. The assays described here are used for the quantification of BTSC migration and invasion over time and under different treatment conditions.


Subject(s)
Brain Neoplasms/diagnostic imaging , Brain/pathology , Glioblastoma/diagnostic imaging , Neoplastic Stem Cells/metabolism , Brain Neoplasms/pathology , Cell Differentiation , Cell Movement , Cell Proliferation , Glioblastoma/pathology , Humans , Neoplastic Stem Cells/pathology
15.
Proc Natl Acad Sci U S A ; 114(40): 10743-10748, 2017 10 03.
Article in English | MEDLINE | ID: mdl-28916733

ABSTRACT

IDH1 mutation is the earliest genetic alteration in low-grade gliomas (LGGs), but its role in tumor recurrence is unclear. Mutant IDH1 drives overproduction of the oncometabolite d-2-hydroxyglutarate (2HG) and a CpG island (CGI) hypermethylation phenotype (G-CIMP). To investigate the role of mutant IDH1 at recurrence, we performed a longitudinal analysis of 50 IDH1 mutant LGGs. We discovered six cases with copy number alterations (CNAs) at the IDH1 locus at recurrence. Deletion or amplification of IDH1 was followed by clonal expansion and recurrence at a higher grade. Successful cultures derived from IDH1 mutant, but not IDH1 wild type, gliomas systematically deleted IDH1 in vitro and in vivo, further suggestive of selection against the heterozygous mutant state as tumors progress. Tumors and cultures with IDH1 CNA had decreased 2HG, maintenance of G-CIMP, and DNA methylation reprogramming outside CGI. Thus, while IDH1 mutation initiates gliomagenesis, in some patients mutant IDH1 and 2HG are not required for later clonal expansions.


Subject(s)
Epigenomics , Gene Amplification , Glioma/genetics , Isocitrate Dehydrogenase/genetics , Mutation , Neoplasm Recurrence, Local/genetics , Sequence Deletion , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , DNA Copy Number Variations , DNA Methylation , Gene Expression Profiling , Glioma/pathology , Glutarates/metabolism , Humans , Isocitrate Dehydrogenase/metabolism , Neoplasm Recurrence, Local/metabolism , Neoplasm Recurrence, Local/pathology , Tumor Cells, Cultured
16.
Neuroimage Clin ; 12: 180-9, 2016.
Article in English | MEDLINE | ID: mdl-27437179

ABSTRACT

Metabolic imaging of brain tumors using (13)C Magnetic Resonance Spectroscopy (MRS) of hyperpolarized [1-(13)C] pyruvate is a promising neuroimaging strategy which, after a decade of preclinical success in glioblastoma (GBM) models, is now entering clinical trials in multiple centers. Typically, the presence of GBM has been associated with elevated hyperpolarized [1-(13)C] lactate produced from [1-(13)C] pyruvate, and response to therapy has been associated with a drop in hyperpolarized [1-(13)C] lactate. However, to date, lower grade gliomas had not been investigated using this approach. The most prevalent mutation in lower grade gliomas is the isocitrate dehydrogenase 1 (IDH1) mutation, which, in addition to initiating tumor development, also induces metabolic reprogramming. In particular, mutant IDH1 gliomas are associated with low levels of lactate dehydrogenase A (LDHA) and monocarboxylate transporters 1 and 4 (MCT1, MCT4), three proteins involved in pyruvate metabolism to lactate. We therefore investigated the potential of (13)C MRS of hyperpolarized [1-(13)C] pyruvate for detection of mutant IDH1 gliomas and for monitoring of their therapeutic response. We studied patient-derived mutant IDH1 glioma cells that underexpress LDHA, MCT1 and MCT4, and wild-type IDH1 GBM cells that express high levels of these proteins. Mutant IDH1 cells and tumors produced significantly less hyperpolarized [1-(13)C] lactate compared to GBM, consistent with their metabolic reprogramming. Furthermore, hyperpolarized [1-(13)C] lactate production was not affected by chemotherapeutic treatment with temozolomide (TMZ) in mutant IDH1 tumors, in contrast to previous reports in GBM. Our results demonstrate the unusual metabolic imaging profile of mutant IDH1 gliomas, which, when combined with other clinically available imaging methods, could be used to detect the presence of the IDH1 mutation in vivo.


Subject(s)
Biomarkers, Tumor/metabolism , Brain Neoplasms/diagnostic imaging , Carbon-13 Magnetic Resonance Spectroscopy/methods , Glioma/diagnostic imaging , Isocitrate Dehydrogenase/metabolism , Lactic Acid/metabolism , Pyruvic Acid/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Glioma/genetics , Glioma/metabolism , Humans , Tumor Cells, Cultured
17.
Nat Neurosci ; 19(6): 798-806, 2016 06.
Article in English | MEDLINE | ID: mdl-27110918

ABSTRACT

EGFRvIII-STAT3 signaling is important in glioblastoma pathogenesis. Here, we identified the cytokine receptor OSMR as a direct target gene of the transcription factor STAT3 in mouse astrocytes and human brain tumor stem cells (BTSCs). We found that OSMR functioned as an essential co-receptor for EGFRvIII. OSMR formed a physical complex with EGFRvIII, and depletion of OSMR impaired EGFRvIII-STAT3 signaling. Conversely, pharmacological inhibition of EGFRvIII phosphorylation inhibited the EGFRvIII-OSMR interaction and activation of STAT3. EGFRvIII-OSMR signaling in tumors operated constitutively, whereas EGFR-OSMR signaling in nontumor cells was synergistically activated by the ligands EGF and OSM. Finally, knockdown of OSMR strongly suppressed cell proliferation and tumor growth of mouse glioblastoma cells and human BTSC xenografts in mice, and prolonged the lifespan of these mice. Our findings identify OSMR as a critical regulator of glioblastoma tumor growth that orchestrates a feed-forward signaling mechanism with EGFRvIII and STAT3 to drive tumorigenesis.


Subject(s)
Brain Neoplasms/metabolism , Cell Transformation, Neoplastic/metabolism , Cytokines/metabolism , Gene Expression Regulation, Neoplastic , Glioblastoma/metabolism , Signal Transduction/physiology , Animals , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , ErbB Receptors/genetics , ErbB Receptors/metabolism , Glioblastoma/pathology , Humans , Male , Mice, Transgenic , Neoplasm Transplantation/methods , STAT3 Transcription Factor/metabolism
18.
Neuro Oncol ; 18(3): 350-60, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26245525

ABSTRACT

BACKGROUND: Glioblastoma (GBM) is a fatal cancer that has eluded major therapeutic advances. Failure to make progress may reflect the absence of a human GBM model that could be used to test compounds for anti-GBM activity. In this respect, the development of brain tumor-initiating cell (BTIC) cultures is a step forward because BTICs appear to capture the molecular diversity of GBM better than traditional glioma cell lines. Here, we perform a comparative genomic and genetic analysis of BTICs and their parent tumors as preliminary evaluation of the BTIC model. METHODS: We assessed single nucleotide polymorphisms (SNPs), genome-wide copy number variations (CNVs), gene expression patterns, and molecular subtypes of 11 established BTIC lines and matched parent tumors. RESULTS: Although CNV differences were noted, BTICs retained the major genomic alterations characteristic of GBM. SNP patterns were similar between BTICs and tumors. Importantly, recurring SNP or CNV alterations specific to BTICs were not seen. Comparative gene expression analysis and molecular subtyping revealed differences between BTICs and GBMs. These differences formed the basis of a 63-gene expression signature that distinguished cells from tumors; differentially expressed genes primarily involved metabolic processes. We also derived a set of 73 similarly expressed genes; these genes were not associated with specific biological functions. CONCLUSIONS: Although not identical, established BTIC lines preserve the core molecular alterations seen in their parent tumors, as well as the genomic hallmarks of GBM, without acquiring recurring BTIC-specific changes.


Subject(s)
Brain Neoplasms/genetics , DNA Copy Number Variations/genetics , Genome, Human , Glioblastoma/genetics , Neoplastic Stem Cells/pathology , Aged , Autoantibodies/therapeutic use , Brain Neoplasms/pathology , Cell Proliferation/drug effects , Female , Genetic Testing , Glioblastoma/pathology , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide
19.
Cancer Res ; 75(15): 2999-3009, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-26045167

ABSTRACT

Mutant isocitrate dehydrogenase 1 (IDH1) catalyzes the production of 2-hydroxyglutarate but also elicits additional metabolic changes. Levels of both glutamate and pyruvate dehydrogenase (PDH) activity have been shown to be affected in U87 glioblastoma cells or normal human astrocyte (NHA) cells expressing mutant IDH1, as compared with cells expressing wild-type IDH1. In this study, we show how these phenomena are linked through the effects of IDH1 mutation, which also reprograms pyruvate metabolism. Reduced PDH activity in U87 glioblastoma and NHA IDH1 mutant cells was associated with relative increases in PDH inhibitory phosphorylation, expression of pyruvate dehydrogenase kinase-3, and levels of hypoxia inducible factor-1α. PDH activity was monitored in these cells by hyperpolarized (13)C-magnetic resonance spectroscopy ((13)C-MRS), which revealed a reduction in metabolism of hyperpolarized 2-(13)C-pyruvate to 5-(13)C-glutamate, relative to cells expressing wild-type IDH1. (13)C-MRS also revealed a reduction in glucose flux to glutamate in IDH1 mutant cells. Notably, pharmacological activation of PDH by cell exposure to dichloroacetate (DCA) increased production of hyperpolarized 5-(13)C-glutamate in IDH1 mutant cells. Furthermore, DCA treatment also abrogated the clonogenic advantage conferred by IDH1 mutation. Using patient-derived mutant IDH1 neurosphere models, we showed that PDH activity was essential for cell proliferation. Taken together, our results established that the IDH1 mutation induces an MRS-detectable reprogramming of pyruvate metabolism, which is essential for cell proliferation and clonogenicity, with immediate therapeutic implications.


Subject(s)
Isocitrate Dehydrogenase/genetics , Pyruvate Dehydrogenase Complex/metabolism , Pyruvates/metabolism , Astrocytes/metabolism , Cell Line, Tumor/drug effects , Cell Proliferation , Dichloroacetic Acid/pharmacology , Down-Regulation , Glioblastoma/genetics , Glioblastoma/metabolism , Glutamic Acid/metabolism , Glutarates/metabolism , Humans , Isocitrate Dehydrogenase/metabolism , Magnetic Resonance Spectroscopy/methods , Mutation
20.
Stem Cell Reports ; 5(1): 1-9, 2015 Jul 14.
Article in English | MEDLINE | ID: mdl-26095605

ABSTRACT

In glioblastoma multiforme (GBM), brain-tumor-initiating cells (BTICs) with cancer stem cell characteristics have been identified and proposed as primordial cells responsible for disease initiation, recurrence, and therapeutic resistance. However, the extent to which individual, patient-derived BTIC lines reflect the heterogeneity of GBM remains poorly understood. Here we applied a stem cell biology approach and compared self-renewal, marker expression, label retention, and asymmetric cell division in 20 BTIC lines. Through cluster analysis, we identified two subgroups of BTIC lines with distinct precursor states, stem- or progenitor-like, predictive of survival after xenograft. Moreover, stem and progenitor transcriptomic signatures were identified, which showed a strong association with the proneural and mesenchymal subtypes, respectively, in the TCGA cohort. This study proposes a different framework for the study and use of BTIC lines and provides precursor biology insights into GBM.


Subject(s)
Brain Neoplasms/pathology , Glioblastoma/pathology , Neoplastic Stem Cells/pathology , Animals , Cell Differentiation/genetics , Cell Line, Tumor , Genetic Heterogeneity , Humans , Mice , Transcriptome/genetics , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...