Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 102(41): 14801-6, 2005 Oct 11.
Article in English | MEDLINE | ID: mdl-16203976

ABSTRACT

The mechanism by which hypoxia [low partial pressure of O(2) (pO(2))] elicits signaling to regulate pulmonary arterial pressure is incompletely understood. We considered the possibility that, in addition to its effects on smooth muscle, hypoxia may influence pulmonary vascular tone through an effect on RBCs. We report that exposure of native RBCs to sustained hypoxia is accompanied by a buildup of heme iron-nitrosyl (FeNO) species that are deficient in pO(2-)governed intramolecular transfer of NO to cysteine thiol, yielding a deficiency in the vasodilator S-nitrosohemoglobin (SNO-Hb). S-nitrosothiol (SNO)-deficient RBCs produce impaired vasodilator responses in vitro and exaggerated pulmonary vasoconstrictor responses in vivo and are defective in oxygenating the blood. RBCs from hypoxemic patients with elevated pulmonary arterial pressure (PAP) exhibit a similar FeNO/SNO imbalance and are thus deficient in pO(2)-coupled vasoregulation. Chemical restoration of SNO-Hb levels in both animals and patients restores the vasodilator activity of RBCs, and this activity is associated with improved oxygenation and lower PAPs.


Subject(s)
Erythrocytes/metabolism , Hemoglobins/deficiency , Hypertension, Pulmonary/metabolism , Hypoxia/metabolism , Nitric Oxide/metabolism , Pulmonary Gas Exchange/drug effects , S-Nitrosothiols/pharmacology , Animals , Blood Pressure/drug effects , Erythrocytes/drug effects , Female , Hemodynamics/physiology , Humans , Iron/metabolism , Lung/metabolism , Middle Aged , Nitrites/pharmacology , Nitrogen Oxides/metabolism , Oxygen/metabolism , Rabbits , Sus scrofa
2.
J Inorg Biochem ; 99(4): 912-21, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15811508

ABSTRACT

Hypoxic vasodilation involves detection of the oxygen content of blood by a sensor, which rapidly transduces this signal into vasodilatory bioactivity. Current perspectives on the molecular mechanism of this function hold that hemoglobin (Hb) operates as both oxygen sensor and a condition-responsive NO reactor that regulates the dispensing of bioactivity through release of the NO group from the beta-cys93 S-nitroso derivative of Hb, SNO-Hb. A common path to the formation of SNO-Hb involves oxidative transfer of the NO-group from heme to thiol. We have previously reported that the reaction of nitrite with deoxy-Hb, which furnishes heme-Fe(II)NO, represents one attractive route for the formation of SNO-Hb. Recent literature, however, posits that the nitrite-reductase reaction of Hb might produce physiological vasodilatory effects through NO that evades trapping on heme-Fe(II) and may be stored before release as Fe(III)NO. In this article, we briefly review current perspectives in NO biology on the nitrite-reductase reaction of Hb. We report in vitro spectroscopic (UV/Vis, EPR) studies that are difficult to reconcile with suggestions that this reaction either generates a heme-Fe(III)NO reservoir or significantly liberates NO. We further show in bioassay experiments that combinations of nitrite and deoxy-Hb--under conditions that suppress SNO-Hb formation--exhibit no direct vasodilatory activity. These results help underscore the differences between physiological, RBC-regulated, hypoxic vasodilation versus pharmacological effects of exogenous nitrite.


Subject(s)
Hemoglobins/metabolism , Nitrites/metabolism , Vasodilation/physiology , Biosensing Techniques , Erythrocytes/metabolism , Ferric Compounds/chemistry , Ferric Compounds/metabolism , Ferrous Compounds/chemistry , Ferrous Compounds/metabolism , Heme/chemistry , Heme/metabolism , Hemoglobins/chemistry , Nitrite Reductases/metabolism , Nitrites/chemistry , Nitrosation , Oxygen/chemistry , Oxygen/metabolism , Spectrum Analysis , Time Factors
4.
Proc Natl Acad Sci U S A ; 100(2): 461-6, 2003 Jan 21.
Article in English | MEDLINE | ID: mdl-12524454

ABSTRACT

Previous studies of the interactions of NO with human hemoglobin have implied the predominance of reaction channels that alternatively eliminate NO by converting it to nitrate, or tightly complex it on the alpha subunit ferrous hemes. Both channels could effectively quench NO bioactivity. More recent work has raised the idea that NO groups can efficiently transfer from the hemes to cysteine thiols within the beta subunit (cysbeta-93) to form bioactive nitrosothiols. The regulation of NO function, through its chemical position in the hemoglobin, is supported by response to oxygen and to redox agents that modulate the molecular and electronic structure of the protein. In this article, we focus on reactions in which Fe(III) hemes could provide the oxidative requirements of this NO-group transfer chemistry. We report a detailed investigation of the reductive nitrosylation of human met-Hb, in which we demonstrate the production of S-nitroso (SNO)-Hb through a heme-Fe(III)NO intermediate. The production of SNO-Hb is strongly favored (over nitrite) when NO is gradually introduced in limited total quantities; in this situation, moreover, heme nitrosylation occurs primarily within the beta subunits of the hemoglobin tetramer. SNO-Hb can similarly be produced when Fe(II)NO hemes are subjected to mild oxidation. The reaction of deoxygenated hemoglobin with limited quantities of nitrite leads to the production of beta subunit Fe(II)NO hemes, with SNO-Hb produced on subsequent oxygenation. The common theme of these reactions is the effective coupling of heme-iron and NO redox chemistries. Collectively, they establish a connectivity between hemes and thiols in Hb, through which NO is readily dislodged from storage on the heme to form bioactive SNO-Hb.


Subject(s)
Heme/metabolism , Hemoglobins/biosynthesis , Nitric Oxide/metabolism , Heme/chemistry , Humans , Kinetics , Oxidation-Reduction , Protein Subunits
SELECTION OF CITATIONS
SEARCH DETAIL
...