Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Nat Chem ; 16(6): 922-929, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38570729

ABSTRACT

Lithium metal batteries represent a promising technology for next-generation energy storage, but they still suffer from poor cycle life due to lithium dendrite formation and cathode cracking. Fluorinated solvents can improve battery longevity by improving LiF content in the solid-electrolyte interphase; however, the high cost and environmental concerns of fluorinated solvents limit battery viability. Here we designed a series of fluorine-free solvents through the methylation of 1,2-dimethoxyethane, which promotes inorganic LiF-rich interphase formation through anion reduction and achieves high oxidation stability. The anion-derived LiF interphases suppress lithium dendrite growth on the lithium anode and minimize cathode cracking under high-voltage operation. The Li+-solvent structure is investigated through in situ techniques and simulations to draw correlations between the interphase compositions and electrochemical performances. The methylation strategy provides an alternative pathway for electrolyte engineering towards high-voltage electrolytes while reducing dependence on expensive fluorinated solvents.

3.
Nat Commun ; 15(1): 1206, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38332019

ABSTRACT

Micro-sized silicon anodes can significantly increase the energy density of lithium-ion batteries with low cost. However, the large silicon volume changes during cycling cause cracks for both organic-inorganic interphases and silicon particles. The liquid electrolytes further penetrate the cracked silicon particles and reform the interphases, resulting in huge electrode swelling and quick capacity decay. Here we resolve these challenges by designing a high-voltage electrolyte that forms silicon-phobic interphases with weak bonding to lithium-silicon alloys. The designed electrolyte enables micro-sized silicon anodes (5 µm, 4.1 mAh cm-2) to achieve a Coulombic efficiency of 99.8% and capacity of 2175 mAh g-1 for >250 cycles and enable 100 mAh LiNi0.8Co0.15Al0.05O2 pouch full cells to deliver a high capacity of 172 mAh g-1 for 120 cycles with Coulombic efficiency of >99.9%. The high-voltage electrolytes that are capable of forming silicon-phobic interphases pave new ways for the commercialization of lithium-ion batteries using micro-sized silicon anodes.

4.
Angew Chem Int Ed Engl ; 63(5): e202317109, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38078892

ABSTRACT

Significant capacity loss has been observed across extended cycling of lithium-ion batteries cycled to high potential. One of the sources of capacity fade is transition metal dissolution from the cathode active material, ion migration through the electrolyte, and deposition on the solid-electrolyte interphase on the anode. While much research has been conducted on the oxidation state of the transition metal in the cathode active material or deposited on the anode, there have been limited investigations of the oxidation state of the transition metal ions dissolved in the electrolyte. In this work, X-ray absorption spectroscopy has been performed on electrolytes extracted from cells built with four different cathode active materials (LiMn2 O4 (LMO), LiNi0.5 Mn1.5 O4 (LNMO), LiNi0.8 Mn0.1 Co0.1 O2 (NMC811), and (x Li2 MnO3 *(1-x) LiNia Mnb Coc O2 , with a+b+c=1) (LMRNMC)) that were cycled at either high or standard potentials to determine the oxidation state of Mn and Ni in solution. Inductively coupled plasma-mass spectrometry has been performed on the anodes from these cells to determine the concentration of deposited transition metal ions. While transition metal ions were found dissolved in all electrolytes, the oxidation state(s) of Mn and Ni were determined to be dependent on the cathode material and independent of cycling potential.

5.
Adv Mater ; 36(7): e2306462, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38013502

ABSTRACT

Anion solvation in electrolytes can largely change the electrochemical performance of the electrolytes, yet has been rarely investigated. Herein, three anions of bis(trifluoromethanesulfonyl)imide (TFSI), bis(fluorosulfonyl)imide (FSI), and derived asymmetric (fluorosulfonyl)(trifluoro-methanesulfonyl)imide (FTFSI) are systematically examined in a weakly Li+ cation solvating solvent of bis(3-fluoropropyl)ether (BFPE). In-situ liquid secondary ion mass spectrometry demonstrates that FTFSI- and FSI- anions are associated with BFPE solvent, while weak TFSI- /BFPE cluster signals are detected. Molecular modeling further reveals that the anion-solvent interaction is accompanied by the formation of H-bonding-like interactions. Anion solvation enhances the Li+ cation transfer number and reduces the organic component in solid electrolyte interphase, which enhances the Li plating/stripping Coulombic efficiency at a low temperature of -30 °C from 42.4% in TFSI-based electrolytes to 98.7% in 1.5 m LiFTFSI and 97.9% in LiFSI-BFPE electrolytes. The anion-solvent interactions, especially asymmetric anion solvation also accelerate the Li+ desolvation kinetics. The 1.5 m LiFTFSI-BFPE electrolyte with strong anion-solvent interaction enables LiNi0.8 Mn0.1 Co0.1 O2 (NMC811)||Li (20 µm) full cell with stable cyclability even under -40 °C, retaining over 92% of initial capacity (115 mAh g-1 , after 100 cycles). The anion-solvent interactions insights allow to rational design the electrolyte for lithium metal batteries and beyond to achieve high performance.

6.
Angew Chem Int Ed Engl ; 62(8): e202216169, 2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36592348

ABSTRACT

Electrolyte engineering is crucial for developing high-performance lithium metal batteries (LMB). Here, we synthesized two cosolvents methyl bis(fluorosulfonyl)imide (MFSI) and 3,3,4,4-tetrafluorotetrahydrofuran (TFF) with significantly different reduction potentials and add them into LiFSI-DME electrolytes. The LiFSI/TFF-DME electrolyte gave an average Li Coulombic efficiency (CE) of 99.41 % over 200 cycles, while the average Li CEs for MFSI-based electrolyte is only 98.62 %. Additionally, the TFF-based electrolytes exhibited a more reversible performance than the state-of-the-art fluorinated 1,4-dimethoxylbutane electrolyte in both Li||Cu half-cell and anode-free Cu||LiNi0.8 Mn0.1 Co0.1 O2 full cell. More importantly, the decomposition product from bis(fluorosulfonyl)imide anion could react with ether solvent, which destroyed the SEI, thus decreasing cell performance. These key discoveries provide new insights into the rational design of electrolyte solvents and cosolvents for LMB.

7.
Adv Mater ; 34(43): e2205229, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36054917

ABSTRACT

Copper fluoride (CuF2 ) has the highest energy density among all metal fluoride cathodes owing to its high theoretical potential (3.55 V) and high capacity (528 mAh g-1 ). However, CuF2  can only survive for less than five cycles, mainly due to serious Cu-ion dissolution during charge/discharge cycles. Herein, copper dissolution is successfully suppressed by forming Cu2+ -coordinated sodium alginate (Cu-SA) on the surface of CuF2  particles during the electrode fabrication process, by using water as a slurry solvent and sodium alginate (SA) as a binder. The trace dissolved Cu2+ in water from CuF2  can in situ cross-link with SA binder forming a conformal Cu-SA layer on CuF2  surface. After water evaporation during the electrode dry process, the Cu-SA layer is Li-ion conductor but Cu2+ insulator, which can effectively suppress the dissolution of Cu-ions in the organic 4 m LiClO4 /ethylene carbonate/propylene carbonate electrolyte, enhancing the reversibility of CuF2 . CuF2  electrode with SA binder delivers a reversible capacity of 420.4 mAh g-1  after 50 cycles at 0.05 C, reaching an energy density of 1009.1 Wh kg-1 . Cu2+ cross-link polymer coating on CuF2  opens the door for stabilizing the high-energy and low-cost CuF2  cathode for next-generation Li-ion batteries.

8.
Angew Chem Int Ed Engl ; 61(35): e202205967, 2022 Aug 26.
Article in English | MEDLINE | ID: mdl-35789166

ABSTRACT

LiNix Coy Mnz O2 (x+y+z=1)||graphite lithium-ion battery (LIB) chemistry promises practical applications. However, its low-temperature (≤ -20 °C) performance is poor because the increased resistance encountered by Li+ transport in and across the bulk electrolytes and the electrolyte/electrode interphases induces capacity loss and battery failures. Though tremendous efforts have been made, there is still no effective way to reduce the charge transfer resistance (Rct ) which dominates low-temperature LIBs performance. Herein, we propose a strategy of using low-polarity-solvent electrolytes which have weak interactions between the solvents and the Li+ to reduce Rct , achieving facile Li+ transport at sub-zero temperatures. The exemplary electrolyte enables LiNi0.8 Mn0.1 Co0.1 O2 ||graphite cells to deliver a capacity of ≈113 mAh g-1 (98 % full-cell capacity) at 25 °C and to remain 82 % of their room-temperature capacity at -20 °C without lithium plating at 1/3C. They also retain 84 % of their capacity at -30 °C and 78 % of their capacity at -40 °C and show stable cycling at 50 °C.

10.
ACS Appl Mater Interfaces ; 13(19): 22351-22360, 2021 May 19.
Article in English | MEDLINE | ID: mdl-33945248

ABSTRACT

The beneficial role of lithium bis(trimethylsilyl) phosphate (LiTMSP), which may act as a novel bifunctional additive for high-voltage LiNi1.5Mn0.5O4 (LNMO)/graphite cells, has been investigated. LiTMSP is synthesized by heating tris(trimethylsilyl) phosphate with lithium tert-butoxide. The cycle performance of LNMO/graphite cells at 45 °C significantly improved upon incorporation of LiTMSP (0.5 wt %). Nuclear magnetic resonance analysis suggests that the trimethylsilyl (TMS) group in LiTMSP can react with hydrogen fluoride (HF), which is generated through the hydrolysis of lithium hexafluorophosphate (LiPF6) by residual water in an electrolyte solution or water generated via oxidative electrolyte decomposition reactions to form TMS fluoride. Inhibition of HF leads to a decrease in the concentration of transition-metal ion-dissolution (Ni and Mn) from the LNMO electrode, as determined by inductively coupled plasma mass spectrometry. In addition, the generation of the superior passivating surface film derived by LiTMSP on the graphite electrode, suppressing further electrolyte reductive decomposition as well as deterioration/reformation caused by migrated transition metal ions, is supported by a combination of chronoamperometry, X-ray photoelectron spectroscopy, and field-emission scanning electron microscopy. Furthermore, a LiTMSP-derived surface film has better lithium ion conductivity with a decrease in resistance of the graphite electrode, as confirmed by electrochemical impedance spectroscopy, leading to improvement in the rate performance of LNMO/graphite cells. The HF-scavenging and film-forming effects of LiTMPS are responsible for the less polarization of LNMO/graphite cells enabling improved cycle performance at 45 °C.

11.
ACS Appl Mater Interfaces ; 13(21): 24995-25001, 2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34010556

ABSTRACT

A novel electrolyte system with an excellent low-temperature performance for lithium-ion batteries (LIBs) has been developed and studied. It was discovered for the first time, in this work, that when isoxazole (IZ) was used as the main solvent, the ionic conductivity of the electrolyte for LIBs is more than doubled in a temperature range between -20 and 20 °C compared to the baseline electrolyte using ethylene carbonate-ethyl methyl carbonate as solvents. To solve the problem of solvent co-intercalation into the graphite anode and/or electrolyte decomposition, the lithium difluoro(oxalato)borate (LiDFOB) salt and fluoroethylene carbonate (FEC) additive were used to form a stable solid electrolyte interphase on the surface of the graphite anode. Benefitting from the high ionic conductivity at low temperature, cells using a new electrolyte with 1 M LiDFOB in FEC/IZ (1:10, vol %) solvents demonstrated a very high reversible capacity of 187.5 mAh g-1 at -20 °C, while the baseline electrolyte only delivered a reversible capacity of 23.1 mAh g-1.

12.
ACS Appl Mater Interfaces ; 12(30): 33719-33728, 2020 Jul 29.
Article in English | MEDLINE | ID: mdl-32608965

ABSTRACT

Metallic lithium (Li) has great potential as an anode material for high-energy-density batteries due to its high specific capacity. However, the uncontrollable dendritic lithium growth on the metallic lithium surface limits its practical application owing to the instability of the solid electrolyte interphase (SEI). A tailored SEI composition/structure can mitigate or inhibit the lithium dendrites' growth, thereby enhancing the cyclability of the Li-metal anode. In this work, excellent cycling stability of lithium metal anodes was achieved by utilizing a novel dual-salt electrolyte based on lithium bis(fluorosulfonyl) imide (LiFSI) and lithium difluorobis(oxalato) phosphate (LiDFBOP) in carbonate solvents. By combining surface/microstructural characterization and computations, we reveal that the preferential reduction of LiDFBOP occurs prior to LiFSI and carbonate solvents and its reduction products (Li2C2O4 and P-O species) bind to LiF, resulting in a favorable compact and protective SEI on the Li electrodes. It was found that the improved oxidative stability was accompanied by reduced corrosion of the current collector. A Li/Li symmetrical cell with a designed dual-salt electrolyte system exhibits stable polarization voltage over 1000 h of cycle time. In addition, the LiFSI-LiDFBOP advantage of this dual-salt electrolyte system enables the Li/LiFePO4 cells with significantly enhanced cycling stability. This work demonstrates that constructing a tailored SEI using a dual-salt electrolyte system is vital for improving the interfacial stability of lithium metal batteries.

13.
Nano Lett ; 18(9): 5752-5759, 2018 09 12.
Article in English | MEDLINE | ID: mdl-30103601

ABSTRACT

We present an experimental approach for in situ measurement of elastic modulus of the solid electrolyte interphase (SEI), which is formed from reactions between a lithium thin-film [on a polydimethylsiloxane (PDMS) substrate] and a room-temperature ionic liquid (RTIL) electrolyte. The SEI forms under a state of compressive stress, which causes buckling of the sample surface. In situ atomic force microscopy is used to measure the dominant wavelength of the wrinkled surface topography. A mechanics analysis of strain-induced elastic buckling instability of a stiff thin film on a soft substrate is used to determine the plane strain modulus of the SEI from the measured wavelength. The measurements are performed for three RTIL electrolytes: 1-butyl 1-methylpiperidinium bis(trifluoromethylsulfonyl)imide (P14 TFSI) without any lithium salt, 1.0 M lithium bis(trifluoromethylsulfonyl)imide (Li TFSI) in P14 TFSI, and 1.0 M lithium bis(fluorosulfonyl)imide (Li FSI) in P14 TFSI to investigate the influence of lithium salts on the plane strain modulus of the SEI. The measurements yield plane-strain moduli of approximately 1.3 GPa for no-salt P14 TFSI and approximately 1.6 GPa for 1.0 M Li TFSI in P14 TFSI and 1.0 M Li FSI in P14 TFSI. The experimental technique presented here eliminates some of the uncertainties associated with traditional SEI mechanical characterization approaches and offers a platform to engineer an SEI with desired mechanical properties by approaches that include altering the electrolyte composition.

14.
Langmuir ; 33(36): 8869-8876, 2017 09 12.
Article in English | MEDLINE | ID: mdl-28783351

ABSTRACT

Tin (Sn) is a useful anode material for lithium ion batteries (LIBs) because of its high theoretical capacity. We fabricated oil-in-water emulsion-templated tin nanoparticle/carbon black (SnNP/CB) anodes with octane, hexadecane, 1-chlorohexadecane, and 1-bromohexadecane as the oil phases. Emulsion creaming, the oil vapor pressure, and the emulsion droplet size distribution all affect drying and thus the morphology of the dried emulsion. This morphology has a direct impact on the electrochemical performance of the anode. SnNP/CB anodes prepared with hexadecane showed very few cracks and had the highest capacities and capacity retention. The combination of low vapor pressure, creaming, which forced the emulsion droplets into a close-packed arrangement on the surface of the continuous water phase, and the small droplets allowed for gentle evaporation of the liquids during drying. This led to lower differential stresses on the sample and reduced cracking. For octane, the vapor pressure was high, the droplet sizes were large for 1-cholorohexadecane, and there was no creaming for 1-bromohexadecane. All of these factors contributed to cracking of the anode surface during drying and reduced the electrochemical performance. Choosing an oil with balanced properties is important for obtaining the best cell performance for emulsion-templated anodes for LIBs.

15.
ACS Appl Mater Interfaces ; 9(24): 20467-20475, 2017 Jun 21.
Article in English | MEDLINE | ID: mdl-28562011

ABSTRACT

A direct comparison of the cathode-electrolyte interface (CEI) generated on high-voltage LiNi0.5Mn1.5O4 cathodes with three different lithium borate electrolyte additives, lithium bis(oxalato)borate (LiBOB), lithium 4-pyridyl trimethyl borate (LPTB), and lithium catechol dimethyl borate (LiCDMB), has been conducted. The lithium borate electrolyte additives have been previously reported to improve the capacity retention and efficiency of graphite/LiNi0.5Mn1.5O4 cells due to the formation of passivating CEI. Linear sweep voltammetry (LSV) suggests that incorporation of the lithium borates into 1.2 M LiPF6 in EC/EMC (3/7) electrolyte results in borate oxidation on the cathode surface at high potential. The reaction of the borates on the cathode surface leads to an increase in impedance as determined by electrochemical impedance spectroscopy (EIS), consistent with the formation of a cathode surface film. Ex-situ surface analysis of the electrode via a combination of SEM, TEM, IR-ATR, XPS, and high energy XPS (HAXPES) suggests that oxidation of all borate additives results in deposition of a passivation layer on the surface of LiNi0.5Mn1.5O4 which inhibits transition metal ion dissolution from the cathode. The passivation layer thickness increases as a function of additive structure LiCDMB > LPTB > LiBOB. The results suggest that the CEI thickness can be controlled by the structure and reactivity of the electrolyte additive.

16.
Nanomicro Lett ; 9(2): 20, 2017.
Article in English | MEDLINE | ID: mdl-30460316

ABSTRACT

ABSTRACT: ZnCo2O4 nanocluster particles (NCPs) were prepared through a designed hydrothermal method, with the assistance of a surfactant, sodium dodecyl benzene sulfonate. The crystalline structure and surface morphology of ZnCo2O4 were investigated by XRD, XPS, SEM, TEM, and BET analyses. The results of SEM and TEM suggest a clear nanocluster particle structure of cubic ZnCo2O4 (~100 nm in diameter), which consists of aggregated primary nanoparticles (~10 nm in diameter), is achieved. The electrochemical behavior of synthesized ZnCo2O4 NCPs was investigated by galvanostatic discharge/charge measurements and cyclic voltammetry. The ZnCo2O4 NCPs exhibit a high reversible capacity of 700 mAh g-1 over 100 cycles under a current density of 100 mA g-1 with an excellent coulombic efficiency of 98.9% and a considerable cycling stability. This work demonstrates a facile technique designed to synthesize ZnCo2O4 NCPs which show great potential as anode materials for lithium ion batteries.

17.
Langmuir ; 33(37): 9254-9261, 2017 09 19.
Article in English | MEDLINE | ID: mdl-27996265

ABSTRACT

Citric acid and its analogues have been investigated as surface-modifying agents for Si nanoparticle anodes using electrochemical cycling, attenuated total reflectance infrared (ATR IR), and X-ray photoelectron spectroscopy (XPS). A Si nanoparticle anode prepared with citric acid (CA) has better capacity retention than one containing 1,2,3,4-butanetetracarboxylic acid (BA), but both electrodes outperform Si-PVDF. The Si-CA anode has an initial specific capacity of 3530 mA h/g and a first cycle efficiency of 82%. Surprisingly, the Si-CA electrode maintains a high specific capacity of ∼2200 mA h/g after 250 cycles, corresponding to 64% capacity retention, which is similar to the Si prepared with long-chain poly(acrylic acid) (PAA). On the contrary, the silicon electrode prepared with PVDF has a fast capacity fade and retains only 980 mA h/g after 50 cycles. The IR and XPS data show that the Si-CA electrode has an SEI composed primarily of lithium citrate during the first 50 cycles, resulting from the electrochemical reduction of citric acid. Only low concentrations of electrolyte reduction products are observed. The lithium citrate layer derived from CA stabilizes the silicon surface and suppresses electrolyte reduction, which likely contributes to the enhanced cycling performance of the Si nanoparticle anode.

18.
ACS Appl Mater Interfaces ; 8(19): 12211-20, 2016 05 18.
Article in English | MEDLINE | ID: mdl-27135935

ABSTRACT

The effects of different binders, polyvinylidene difluoride (PVdF), poly(acrylic acid) (PAA), sodium carboxymethyl cellulose (CMC), and cross-linked PAA-CMC (c-PAA-CMC), on the cycling performance and solid electrolyte interphase (SEI) formation on silicon nanoparticle electrodes have been investigated. Electrodes composed of Si-PAA, Si-CMC, and Si-PAA-CMC exhibit a specific capacity ≥3000 mAh/g after 20 cycles while Si-PVdF electrodes have a rapid capacity fade to 1000 mAh/g after just 10 cycles. Infrared spectroscopy (IR) and X-ray photoelectron spectroscopy (XPS) reveal that PAA and CMC react with the surface of the Si nanoparticles during electrode fabrication. The fresh Si-CMC electrode has a thicker surface coating of SiOx than Si-PAA and Si-PAA-CMC electrodes, due to the formation of thicker SiOx during electrode preparation, which leads to lower cyclability. The carboxylic acid functional groups of the PAA binder are reactive toward the electrolyte, causing the decomposition of LiPF6 and dissolution of SiOx during the electrode wetting process. The PAA and CMC binder surface films are then electrochemically reduced during the first cycle to form a protective layer on Si. This layer effectively suppresses the decomposition of carbonate solvents during cycling resulting in a thin SEI. On the contrary, the Si-PVDF electrode has poor cycling performance and continuous reduction of carbonate solvents is observed resulting in the generation of a thicker SEI. Interestingly, the Lewis basic -CO2Na of CMC was found to scavenge HF in electrolyte.

19.
ACS Appl Mater Interfaces ; 7(38): 21391-7, 2015 Sep 30.
Article in English | MEDLINE | ID: mdl-26355591

ABSTRACT

Silicon (Si) particles have emerged as a promising active material for next-generation lithium-ion battery anodes. However, the large volume changes during lithiation/delithiation cycles result in fracture and pulverization of Si, leading to rapid fading of performance. Here, we report a simple, all-aqueous, directed assembly-based strategy to fabricate Si-based anodes that show capacity and capacity retention that are comparable or better than other more complex methods for forming anodes. We use a cationic surfactant, cetyltrimethylammonium bromide (CTAB), to stabilize Si nanoparticles (SiNPs) in water. This suspension is added to an aqueous suspension of para-amino benzoic acid-terminated carbon black (CB), pH 7. Charge interactions cause the well-dispersed SiNP to bind to the CB, allowing most of the SiNP to be available for lithiation and charge transfer. The CB forms a conducting network when the suspension pH is lowered. The dried SiNP/CTAB/CB anode exhibits a capacity of 1580 mAh g(-1) and efficiency of 97.3% after 50 cycles at a rate of 0.1C, and stable performance at cycling rates up to 5C. The directed spatial organization of the SiNP and CB using straightforward colloidal principles allows good contact between the well-dispersed active material and the electrically conducting network. The pore space in the CB network accommodates volume changes in the SiNPs. When CTAB is not used, the SiNPs form aggregates in the suspension, and do not contact the CB effectively. Therefore, the electrochemical performance of the SiNP/CB anode is inferior to that of the SiNP/CTAB/CB anode. This aqueous-based, room temperature, directed assembly technique is a new, but simple, low-cost scalable method to fabricate stable Si-based anodes for lithium-ion batteries with performance characteristics that match those made by other more sophisticated techniques.

20.
ACS Appl Mater Interfaces ; 7(36): 20004-11, 2015 Sep 16.
Article in English | MEDLINE | ID: mdl-26305165

ABSTRACT

Binder-free silicon (BF-Si) nanoparticle anodes were cycled with 1.2 M LiPF6 in ethylene carbonate (EC), fluoroethylene carbonate (FEC), or EC with 15% FEC (EC:FEC), extracted from cells and analyzed by Hard X-ray Photoelectron Spectroscopy (HAXPES). All of the electrolytes generate an SEI which is integrated with Si containing species. The EC and EC:FEC electrolytes result in the generation of LixSiOy after the first cycle while LixSiOy is only observed after five cycles for the FEC electrolyte. The SEI initially generated from the EC electrolyte is primarily composed of lithium ethylene dicarbonate (LEDC) and LiF. However, after five cycles, the composition changes, especially near the surface of silicon because of decomposition of the LEDC. The SEI generated from the EC:FEC electrolytes contains LEDC, LiF, and poly(FEC) and small changes are observed upon additional cycling. The SEI generated with the FEC electrolyte contains LiF and poly(FEC) and small changes are observed upon additional cycling. The stability of the SEI correlates with the observed capacity retention of the cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...