Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 3(9): 11608-11616, 2018 Sep 30.
Article in English | MEDLINE | ID: mdl-31459259

ABSTRACT

The dichloro titanium complexes (OSSO tBu)TiCl2 (1) and (OSSOCum)TiCl2 (2) bearing o-phenylene-bridged OSSO-type ligands [OSSO tBu-H = 6,6'-((1,2-phenylenebis(sulfanediyl))bis(methylene))bis(2,4-di-tert-butyphenol) and OSSOCum-H = 6,6'-((1,2-phenylenebis(sulfanediyl))bis(methylene))bis(2,4-bis(2-phenylpropan-2-yl)phenol)] were prepared and characterized. The X-ray structure of 1 revealed that Ti atom has an octahedral coordination geometry with an fac-fac wrapping of the [OSSO] ligand. In solution at 25 °C, 1 mainly retains the C 2 symmetric structure, whereas 2 shows an equilibrium between C 2- and C 1-symmetric stereoisomers. Activation of 2 with (Ph3C)[B(C6F5)4] led to a highly active catalytic system with an activity of 238 kgPE·molcat -1·bar-1·h-1; linear polyethylene with a T m of 122 °C and M w of 107 kDa were obtained under these conditions. Catalyst 1 displayed the moderate activity of 59 kgPE·molcat -1·bar-1·h-1. Gel permeation chromatography analysis revealed the formation of high-molecular-weight polyethylenes with very large distributions of the molecular weights, indicating a low control of the polymerization process, probably becaue of the presence of different active species in solution. Density functional theory investigation provides a rational for the relative high-molecular-weight polymers obtained with these complexes. The precatalyst 2 was also active in propylene polymerization producing atactic oligomers terminated with unsaturated end groups.

2.
Faraday Discuss ; 183: 83-95, 2015.
Article in English | MEDLINE | ID: mdl-26402776

ABSTRACT

The selective and effective synthesis of organic carbonates under mild conditions, starting from carbon dioxide and oxiranes, catalyzed by metal complexes is currently a focus of interest for both industrial and academic researchers. We recently developed a novel thioether-triphenolate iron(III) catalyst (Ct-BU) that has proven to be highly active for the coupling of CO2 with epoxides, resulting in cyclic organic carbonates under solvent-free conditions. In the current work, the properties of this novel class of catalysts were extensively investigated. In particular, the steric properties of the ligand were modulated by changing the substituents of the aromatic rings in order to obtain a deeper knowledge of the relationship between the complex structure and catalytic performance/selectivity for these iron complexes. Notably, the less steric demanding iron(III) CH complex synthesized shows, when activated by n-tetrabutylammonium bromide, an impressive turnover frequency (TOF) of 3800 h(-1) for the formation of propylene carbonate and glycerol carbonate which are, by far, the highest reported for an iron based catalyst and compares well with the most active catalyst based on other metals.

SELECTION OF CITATIONS
SEARCH DETAIL
...