Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nutrients ; 15(17)2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37686803

ABSTRACT

Background: The role of vitamin D (25(OH)D) in the pathogenesis and outcome of several conditions, including autoimmune diseases, diabetes and cancers is largely described in the literature. The aims of this study were to evaluate the prevalence of 25(OH)D deficit in a cohort of patients with neuroendocrine neoplasms (NENs) in comparison to a matched healthy control group and to analyze the possible role of 25(OH)D as a prognostic factor for NENs in terms of biological aggressiveness, tumor progression and survival. Methods: From 2009 to 2023, 172 patients with NENs (99 females; median age, 63 years) were included in the study. Serum 25(OH)D levels were defined as deficient if ≤20 ng/mL. The possible associations between 25(OH)D levels and disease grading, staging, ki67%, overall survival (OS), and progression-free survival (PFS) were considered. Results: NEN patients had significantly lower 25(OH)D levels compared to controls (p < 0.001) regardless of the primary origin. Patients with 25(OH)D < 20 ng/mL had a significantly higher ki67 index (p = 0.02) compared to the ones with 25(OH)D levels above 20 ng/mL. Patients with disease progression were found to have a significantly lower 25(OH)D at baseline (p = 0.02), whereas PFS and OS were not significantly influenced by 25(OH)D. Conclusions: Vitamin D deficiency is highly prevalent among NENs and is associated with higher ki67 and disease progression. Our study highlights the importance of monitoring 25(OH)D levels in patients with NENs, as its deficiency appeared to be linked to the worst biological tumor aggressiveness.


Subject(s)
Neuroendocrine Tumors , Vitamin D Deficiency , Female , Humans , Middle Aged , Ki-67 Antigen , Vitamin D Deficiency/complications , Vitamin D Deficiency/epidemiology , Vitamin D , Disease Progression
2.
Materials (Basel) ; 16(8)2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37109899

ABSTRACT

In an effort to reduce greenhouse gas emission, reduce the consumption of natural resources, and increase the sustainability of biocomposite foams, the present study focuses on the recycling of cork processing waste for the production of lightweight, non-structural, fireproof thermal and acoustic insulating panels. Egg white proteins (EWP) were used as a matrix model to introduce an open cell structure via a simple and energy-efficient microwave foaming process. Samples with different compositions (ratio of EWP and cork) and additives (eggshells and inorganic intumescent fillers) were prepared with the aim of correlating composition, cellular structures, flame resistance, and mechanical properties.

3.
Polymers (Basel) ; 15(5)2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36904302

ABSTRACT

The present paper reports on the formulation and characterization of composite coating materials susceptible to microwave (MW) heating to investigate their application in making the rotomolding process (RM) more energy efficient. SiC, Fe2SiO4, Fe2O3, TiO2 and BaTiO3 and a methyl phenyl silicone resin (MPS) were employed for their formulations. Experimental results showed that the coatings with a ratio of 2:1 w/w of inorganic/MPS are the most MW-susceptible materials. To test the coatings in working mimicking conditions, they were applied to molds, and polyethylene samples were manufactured by MW-assisted laboratory uni-axial RM and then characterized by calorimetry, infrared spectroscopy and tensile tests. The results obtained suggest that the coatings developed can be successfully applied to convert molds employed for classical RM process to MW-assisted RM processes.

4.
Micromachines (Basel) ; 14(2)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36838125

ABSTRACT

Micro- and nanoscale corrosion and etching at are important in several fields, from the fabrication of sensors and membranes to investigations of the properties of micro- and nanocomposites [...].

5.
RSC Adv ; 12(15): 8924-8935, 2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35424896

ABSTRACT

A novel thiophene derivative, namely 2,5-diisopropenylthiophene (DIT) was synthetized by Suzuki-Miyaura cross-coupling reaction (SMCCR). The influence of reaction parameters, such as temperature, solvent, stoichiometry of reagents, role of the base and reaction medium were thoroughly discussed in view of yield optimization and environmental impact minimization. Basic design of experiment (DoE) and multiple linear regression (MLR) modeling methods were used to interpret the obtained results. DIT was then employed as a comonomer in the copolymerization with waste elemental sulfur through a green process, inverse vulcanization (IV), to obtain sulfur-rich polymers named inverse vulcanized polymers (IVPs) possessing high refractive index (n ≈ 1.8). The DIT comonomer was purposely designed to (i) favor the IV process owing to the high reactivity of the isopropenyl functionalities and (ii) enhance the refractive index of the ensuing IVPs owing to the presence of the sulfur atom itself and to the high electronic polarizability of the π-conjugated thiophene ring. A series of random sulfur-r-diisopropenylthiophene (S-r-DIT) copolymers with sulfur content from 50 up to 90 wt% were synthesized by varying the S/DIT feed ratio. Spectroscopic, thermal and optical characterizations of the new IVPs were carried out to assess their main chemical-physical features.

6.
Polymers (Basel) ; 13(22)2021 Nov 16.
Article in English | MEDLINE | ID: mdl-34833260

ABSTRACT

Hybrid joining (HJ) is the combination of two or more joining techniques to produce joints with enhanced properties in comparison to those obtained from their parent techniques. Their adoption is widespread (metal to metal joint, composite to composite and composite to metal) and is present in a vast range of applications including all industrial sectors, from automotive to aerospace, including naval, construction, mechanical and utilities. The objective of this literature review is to summarize the existing research on hybrid joining processes incorporating structural adhesives highlighting their field of application and to present the recent development in this field. To achieve this goal, the first part presents an introduction on the main class of adhesives, subdivided by their chemical nature (epoxy, polyurethane, acrylic and cyanoacrylate, anaerobic and high-temperature adhesives) The second part describes the most commonly used Hybrid Joining (HJ) techniques (mechanical fastening and adhesive bonding, welding processes and adhesive bonding) The third part of the review is about the application of adhesives in dependence of performance, advantage and disadvantage in the hybrid joining processes. Finally, conclusions and an outlook on critical challenges, future perspectives and research activities are summarized. It was concluded that the use of hybrid joining technology could be considered as a potential solution in various industries, in order to reduce the mass as well as the manufacturing cost.

7.
Molecules ; 26(12)2021 Jun 18.
Article in English | MEDLINE | ID: mdl-34207246

ABSTRACT

Artificial neural networks (ANNs) are a method of machine learning (ML) that is now widely used in physics, chemistry, and material science. ANN can learn from data to identify nonlinear trends and give accurate predictions. ML methods, and ANNs in particular, have already demonstrated their worth in solving various chemical engineering problems, but applications in pyrolysis, thermal analysis, and, especially, thermokinetic studies are still in an initiatory stage. The present article gives a critical overview and summary of the available literature on applying ANNs in the field of pyrolysis, thermal analysis, and thermokinetic studies. More than 100 papers from these research areas are surveyed. Some approaches from the broad field of chemical engineering are discussed as the venues for possible transfer to the field of pyrolysis and thermal analysis studies in general. It is stressed that the current thermokinetic applications of ANNs are yet to evolve significantly to reach the capabilities of the existing isoconversional and model-fitting methods.

8.
J Forensic Sci ; 57(1): 86-92, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22040273

ABSTRACT

This study takes the first step toward in situ analysis of powder drugs which does not require any alteration of the samples. A fast, inexpensive analytical method based on reflectance near-infrared (NIR) spectrometry and multivariate calibration was applied. A diode-array fiber-optic portable spectrometer in the 900-1700 nm range was employed. Samples were laboratory-prepared ternary powders (diacetylmorphine, caffeine, and paracetamol). Partial least squares regression was applied. The choice of the standard samples for calibration and validation was performed through a D-optimal experimental design. The explained variance was higher than 90%, and the relative root mean square errors were <2%. The number of principal components (6) was very low when compared with the number of raw variables (356 absorbance values). Response plots showed slopes and intercepts were very close to optimal values. Correlation coefficients ranged between 0.909 and 0.989. The method here proposed proved to be competitive with Fourier transform NIR spectrometry.

9.
Ann Chim ; 96(11-12): 715-25, 2006.
Article in English | MEDLINE | ID: mdl-17217176

ABSTRACT

Differential scanning calorimetry (DSC) and thermogravimetric analysis (TG) were performed on wood samples of different essences (fir, chestnut, poplar, linden and oak) before consolidation. A kinetic analysis was applied on the two-steps decomposition processes occurring in all wood samples using either the multiheating rates Kissinger equation and the isoconversional Ozawa-Flynn-Wall method that enables the variation of activation energy to be determined as a function of the degree of reaction. Taking into account both decomposition temperature and activation energy for the first degradation step oak seems to be the less stable sample. The comparison of DSC curves performed in air with those in oxygen enables to consider the role of the partial pressure of oxygen in the mechanisms of both decompositions.


Subject(s)
Wood/chemistry , Abies , Aesculus , Archaeology , Calorimetry, Differential Scanning , Desiccation , Kinetics , Populus , Quercus , Thermogravimetry , Tilia
SELECTION OF CITATIONS
SEARCH DETAIL
...