Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Biotechniques ; 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38546276

ABSTRACT

Strand displacement amplification (SDA) is an isothermal amplification technique wherein amplification of a nucleic acid is initiated by nicking enzyme activity at sites flanking the target. Diagnostic SDA is very fast but requires precise optimization and is limited to very short amplicons. Here we report an enhanced approach by addition of single-stranded DNA binding protein, crowding agents and dUTP to enable amplification of kilobase-length products at low temperatures. Additionally, we pair this improved SDA with a novel carryover contamination prevention, eliminating amplifiable DNA at the end of the reaction to reduce contamination risk. Taken together these developments increase the utility and versatility of SDA, broadening the reach of this powerful but uncommonly used method.

2.
G3 (Bethesda) ; 10(9): 3243-3260, 2020 09 02.
Article in English | MEDLINE | ID: mdl-32718933

ABSTRACT

Wolbachia is a genus containing obligate, intracellular endosymbionts with arthropod and nematode hosts. Numerous studies have identified differentially expressed transcripts in Wolbachia endosymbionts that potentially inform the biological interplay between these endosymbionts and their hosts, albeit with discordant results. Here, we re-analyze previously published Wolbachia RNA-Seq transcriptomics data sets using a single workflow consisting of the most up-to-date algorithms and techniques, with the aim of identifying trends or patterns in the pan-Wolbachia transcriptional response. We find that data from one of the early studies in filarial nematodes did not allow for robust conclusions about Wolbachia differential expression with these methods, suggesting the original interpretations should be reconsidered. Across datasets analyzed with this unified workflow, there is a general lack of global gene regulation with the exception of a weak transcriptional response resulting in the upregulation of ribosomal proteins in early larval stages. This weak response is observed across diverse Wolbachia strains from both nematode and insect hosts suggesting a potential pan-Wolbachia transcriptional response during host development that diverged more than 700 million years ago.


Subject(s)
Filarioidea , Nematoda , Wolbachia , Animals , Symbiosis , Transcriptome , Wolbachia/genetics
3.
PLoS One ; 14(9): e0216849, 2019.
Article in English | MEDLINE | ID: mdl-31513600

ABSTRACT

Further characterization of essential systems in the parasitic filarial nematode Brugia malayi is needed to better understand its biology, its interaction with its hosts, and to identify critical components that can be exploited to develop novel treatments. The production of glycophosphatidylinositol-anchored proteins (GPI-APs) is essential for eukaryotic cellular and physiological function. In addition, GPI-APs perform many important roles for cells. In this study, we characterized the B. malayi GPI-anchored proteome using both computational and experimental approaches. We used bioinformatic strategies to show the presence or absence of B. malayi GPI-AP biosynthetic pathway genes and to compile a putative B. malayi GPI-AP proteome using available prediction programs. We verified these in silico analyses using proteomics to identify GPI-AP candidates prepared from the surface of intact worms and from membrane enriched extracts. Our study represents the first description of the GPI-anchored proteome in B. malayi and lays the groundwork for further exploration of this essential protein modification as a target for novel anthelmintic therapeutic strategies.


Subject(s)
Brugia malayi/metabolism , GPI-Linked Proteins/metabolism , Helminth Proteins/metabolism , Proteome , Proteomics , Animals , Biosynthetic Pathways , Brugia malayi/genetics , Chromatography, Liquid , Filariasis/parasitology , Humans , Protein Biosynthesis , Proteomics/methods , Tandem Mass Spectrometry
4.
PLoS One ; 12(3): e0173186, 2017.
Article in English | MEDLINE | ID: mdl-28291780

ABSTRACT

Efficient transcriptomic sequencing of microbial mRNA derived from host-microbe associations is often compromised by the much lower relative abundance of microbial RNA in the mixed total RNA sample. One solution to this problem is to perform extensive sequencing until an acceptable level of transcriptome coverage is obtained. More cost-effective methods include use of prokaryotic and/or eukaryotic rRNA depletion strategies, sometimes in conjunction with depletion of polyadenylated eukaryotic mRNA. Here, we report use of Cappable-seq™ to specifically enrich, in a single step, Wolbachia endobacterial mRNA transcripts from total RNA prepared from the parasitic filarial nematode, Brugia malayi. The obligate Wolbachia endosymbiont is a proven drug target for many human filarial infections, yet the precise nature of its symbiosis with the nematode host is poorly understood. Insightful analysis of the expression levels of Wolbachia genes predicted to underpin the mutualistic association and of known drug target genes at different life cycle stages or in response to drug treatments is typically challenged by low transcriptomic coverage. Cappable-seq resulted in up to ~ 5-fold increase in the number of reads mapping to Wolbachia. On average, coverage of Wolbachia transcripts from B. malayi microfilariae was enriched ~40-fold by Cappable-seq. Additionally, this method has an additional benefit of selectively removing abundant prokaryotic ribosomal RNAs.The deeper microbial transcriptome sequencing afforded by Cappable-seq facilitates more detailed characterization of gene expression levels of pathogens and symbionts present in animal tissues.


Subject(s)
Nematoda/genetics , Nematoda/microbiology , Sequence Analysis, RNA/methods , Symbiosis , Wolbachia/genetics , Animals , RNA, Messenger/genetics , RNA, Transfer/genetics
5.
FASEB J ; 30(10): 3501-3514, 2016 10.
Article in English | MEDLINE | ID: mdl-27363426

ABSTRACT

Nematodes lack a heme biosynthetic pathway and must acquire heme from exogenous sources. Given the indispensable role of heme, this auxotrophy may be exploited to develop drugs that interfere with heme uptake in parasites. Although multiple heme-responsive genes (HRGs) have been characterized within the free-living nematode Caenorhabditis elegans, we have undertaken the first study of heme transport in Brugia malayi, a causative agent of lymphatic filariasis. Through functional assays in yeast, as well as heme analog, RNAi, and transcriptomic experiments, we have shown that the heme transporter B. malayi HRG-1 (BmHRG-1) is indeed functional in B. malayi In addition, BmHRG-1 localizes both to the endocytic compartments and cell membrane when expressed in yeast cells. Transcriptomic sequencing revealed that BmHRG-1, BmHRG-2, and BmMRP-5 (all orthologs of HRGs in C. elegans) are down-regulated in heme-treated B. malayi, as compared to non-heme-treated control worms. Likely because of short gene lengths, multiple exons, other HRGs in B. malayi (BmHRG-3-6) remain unidentified. Although the precise mechanisms of heme homeostasis in a nematode with the ability to acquire heme remains unknown, this study clearly demonstrates that the filarial nematode B. malayi is capable of transporting exogenous heme.-Luck, A. N., Yuan, X., Voronin, D., Slatko, B. E., Hamza, I., Foster, J. M. Heme acquisition in the parasitic filarial nematode Brugia malayi.


Subject(s)
Brugia malayi , Heme/immunology , Homeostasis/physiology , Animals , Caenorhabditis elegans , RNA Interference
6.
Int J Parasitol ; 46(5-6): 333-41, 2016 05.
Article in English | MEDLINE | ID: mdl-26896576

ABSTRACT

A homologue of the ecdysone receptor has been identified and shown to be responsive to 20-hydroxyecdysone in Brugia malayi. However, the role of this master regulator of insect development has not been delineated in filarial nematodes. Gravid adult female B. malayi cultured in the presence of 20-hydroxyecdysone produced significantly more microfilariae and abortive immature progeny than control worms, implicating the ecdysone receptor in regulation of embryogenesis and microfilarial development. Transcriptome analyses identified 30 genes whose expression was significantly up-regulated in 20-hydroxyecdysone-treated parasites compared with untreated controls. Of these, 18% were identified to be regulating transcription. A comparative proteomic analysis revealed 932 proteins to be present in greater amounts in extracts of 20-hydroxyecdysone-treated adult females than in extracts prepared from worms cultured in the absence of the hormone. Of the proteins exhibiting a greater than two-fold difference in the 20-hydroxyecdysone-treated versus untreated parasite extracts, 16% were involved in transcriptional regulation. RNA interference (RNAi) phenotype analysis of Caenorhabditis elegans orthologs revealed that phenotypes involved in developmental processes associated with embryogenesis were significantly over-represented in the transcripts and proteins that were up-regulated by exposure to 20-hydroxyecdysone. Taken together, the transcriptomic, proteomic and phenotypic data suggest that the filarial ecdysone receptor may play a role analogous to that in insects, where it serves as a regulator of egg development.


Subject(s)
Brugia malayi/drug effects , Ecdysterone/pharmacology , Receptors, Steroid/metabolism , Animals , Brugia malayi/genetics , Female , Fertility , Gene Expression Profiling , Helminth Proteins/chemistry , Helminth Proteins/genetics , Helminth Proteins/isolation & purification , Humans , Phenotype , Proteomics , RNA, Helminth/chemistry , RNA, Helminth/isolation & purification , Reverse Transcriptase Polymerase Chain Reaction
7.
BMC Genomics ; 16: 920, 2015 Nov 11.
Article in English | MEDLINE | ID: mdl-26559510

ABSTRACT

BACKGROUND: Filarial nematodes cause debilitating human diseases. While treatable, recent evidence suggests drug resistance is developing, necessitating the development of novel targets and new treatment options. Although transcriptomic and proteomic studies around the nematode life cycle have greatly enhanced our knowledge, whole organism approaches have not provided spatial resolution of gene expression, which can be gained by examining individual tissues. Generally, due to their small size, tissue dissection of human-infecting filarial nematodes remains extremely challenging. However, canine heartworm disease is caused by a closely related and much larger filarial nematode, Dirofilaria immitis. As with many other filarial nematodes, D. immitis contains Wolbachia, an obligate bacterial endosymbiont present in the hypodermis and developing oocytes within the uterus. Here, we describe the first concurrent tissue-specific transcriptomic and proteomic profiling of a filarial nematode (D. immitis) and its Wolbachia (wDi) in order to better understand tissue functions and identify tissue-specific antigens that may be used for the development of new diagnostic and therapeutic tools. METHODS: Adult D. immitis worms were dissected into female body wall (FBW), female uterus (FU), female intestine (FI), female head (FH), male body wall (MBW), male testis (MT), male intestine (MI), male head (MH) and 10.1186/s12864-015-2083-2 male spicule (MS) and used to prepare transcriptomic and proteomic libraries. RESULTS: Transcriptomic and proteomic analysis of several D. immitis tissues identified many biological functions enriched within certain tissues. Hierarchical clustering of the D. immitis tissue transcriptomes, along with the recently published whole-worm adult male and female D. immitis transcriptomes, revealed that the whole-worm transcriptome is typically dominated by transcripts originating from reproductive tissue. The uterus appeared to have the most variable transcriptome, possibly due to age. Although many functions are shared between the reproductive tissues, the most significant differences in gene expression were observed between the uterus and testis. Interestingly, wDi gene expression in the male and female body wall is fairly similar, yet slightly different to that of Wolbachia gene expression in the uterus. Proteomic methods verified 32 % of the predicted D. immitis proteome, including over 700 hypothetical proteins of D. immitis. Of note, hypothetical proteins were among some of the most abundant Wolbachia proteins identified, which may fulfill some important yet still uncharacterized biological function. CONCLUSIONS: The spatial resolution gained from this parallel transcriptomic and proteomic analysis adds to our understanding of filarial biology and serves as a resource with which to develop future therapeutic strategies against filarial nematodes and their Wolbachia endosymbionts.


Subject(s)
Dirofilaria immitis/genetics , Dirofilaria immitis/metabolism , Proteome , Symbiosis , Transcriptome , Wolbachia/genetics , Wolbachia/metabolism , Animals , Cluster Analysis , Computational Biology/methods , Female , Gene Expression Profiling , Male , Organ Specificity/genetics , Proteomics
8.
J Biol Inorg Chem ; 20(3): 487-96, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25537134

ABSTRACT

We report 275 GHz EPR spectra of human serum transferrin. At this high microwave frequency the zero-field splitting between the magnetic sublevels of the high-spin [Formula: see text] sites can be accurately determined. We find the zero-field splitting to be a sensitive probe of the structure of the transferrin iron-binding sites. Signals arising from iron bound to the transferrin N-lobe can clearly be distinguished from signals from iron bound to the C-lobe. Moreover, our spectra show that the structure of the iron site in the N-lobe is influenced by the presence and conformation of the C-lobe. The spectra of a series of N-lobe mutants altering the second-shell interaction of Arg124 with the synergistic anion carbonate reflect conformational changes induced at the iron site.


Subject(s)
Electron Spin Resonance Spectroscopy , Ferric Compounds/chemistry , Models, Molecular , Transferrin/chemistry , Binding Sites , Blood Chemical Analysis , Humans , Transferrin/genetics , Transferrin/metabolism
9.
BMC Genomics ; 15: 1041, 2014 Nov 29.
Article in English | MEDLINE | ID: mdl-25433394

ABSTRACT

BACKGROUND: Dirofilaria immitis, or canine heartworm, is a filarial nematode parasite that infects dogs and other mammals worldwide. Current disease control relies on regular administration of anthelmintic preventives, however, relatively poor compliance and evidence of developing drug resistance could warrant alternative measures against D. immitis and related human filarial infections be taken. As with many other filarial nematodes, D. immitis contains Wolbachia, an obligate bacterial endosymbiont thought to be involved in providing certain critical metabolites to the nematode. Correlations between nematode and Wolbachia transcriptomes during development have not been examined. Therefore, we detailed the developmental transcriptome of both D. immitis and its Wolbachia (wDi) in order to gain a better understanding of parasite-endosymbiont interactions throughout the nematode life cycle. RESULTS: Over 215 million single-end 50 bp reads were generated from total RNA from D. immitis adult males and females, microfilariae (mf) and third and fourth-stage larvae (L3 and L4). We critically evaluated the transcriptomes of the various life cycle stages to reveal sex-biased transcriptional patterns, as well as transcriptional differences between larval stages that may be involved in larval maturation. Hierarchical clustering revealed both D. immitis and wDi transcriptional activity in the L3 stage is clearly distinct from other life cycle stages. Interestingly, a large proportion of both D. immitis and wDi genes display microfilarial-biased transcriptional patterns. Concurrent transcriptome sequencing identified potential molecular interactions between parasite and endosymbiont that are more prominent during certain life cycle stages. In support of metabolite provisioning between filarial nematodes and Wolbachia, the synthesis of the critical metabolite, heme, by wDi appears to be synchronized in a stage-specific manner (mf-specific) with the production of heme-binding proteins in D. immitis. CONCLUSIONS: Our integrated transcriptomic study has highlighted interesting correlations between Wolbachia and D. immitis transcription throughout the life cycle and provided a resource that may be used for the development of novel intervention strategies, not only for the treatment and prevention of D. immitis infections, but of other closely related human parasites as well.


Subject(s)
Dirofilaria immitis/genetics , Microfilariae/genetics , Symbiosis/genetics , Wolbachia/genetics , Animals , Dirofilaria immitis/pathogenicity , Dirofilariasis/genetics , Dirofilariasis/parasitology , Dogs , Female , Gene Expression Profiling , Gene Expression Regulation, Developmental , Life Cycle Stages/genetics , Male , Microfilariae/parasitology , Wolbachia/pathogenicity
10.
Mol Biochem Parasitol ; 195(2): 88-95, 2014 Jul.
Article in English | MEDLINE | ID: mdl-25046729

ABSTRACT

Most human filarial nematode parasites and arthropods are hosts for a bacterial endosymbiont, Wolbachia. In filaria, Wolbachia are required for normal development, fertility and survival, whereas in arthropods, they are largely parasitic and can influence development and reproduction, but are generally not required for host survival. Due to their obligate nature in filarial parasites, Wolbachia have been a target for drug discovery initiatives using several approaches including diversity and focused library screening and genomic sequence analysis. In vitro and in vivo anti-Wolbachia antibiotic treatments have been shown to have adulticidal activity, a long sought goal of filarial parasite drug discovery. In mosquitoes, it has been shown that the presence of Wolbachia can inhibit the transmission of certain viruses, such as Dengue, Chikungunya, Yellow Fever, West Nile, as well as the infectivity of the malaria-causing protozoan, Plasmodium and filarial nematodes. Furthermore, Wolbachia can cause a form of conditional sterility that can be used to suppress populations of mosquitoes and additional medically important insects. Thus Wolbachia, a pandemic endosymbiont offers great potential for elimination of a wide-variety of devastating human diseases.


Subject(s)
Filariasis/parasitology , Filarioidea/microbiology , Nematoda/microbiology , Nematode Infections/parasitology , Symbiosis , Wolbachia/physiology , Animals , Filariasis/drug therapy , Filarioidea/drug effects , Filarioidea/physiology , Humans , Nematoda/drug effects , Nematoda/physiology , Nematode Infections/drug therapy
11.
Biochemistry ; 52(46): 8333-41, 2013 Nov 19.
Article in English | MEDLINE | ID: mdl-24152109

ABSTRACT

It has been previously suggested that large amounts of oxalate in plasma could play a role in autism by binding to the bilobal iron transport protein transferrin (hTF), thereby interfering with iron metabolism by inhibiting the delivery of iron to cells. By examining the effect of the substitution of oxalate for the physiologically utilized synergistic carbonate anion in each lobe of hTF, we sought to provide a molecular basis for or against such a role. Our work clearly shows both qualitatively (6 M urea gels) and quantitatively (kinetic analysis by stopped-flow spectrofluorimetry) that the presence of oxalate in place of carbonate in each binding site of hTF does indeed greatly interfere with the removal of iron from each lobe (in the absence and presence of the specific hTF receptor). However, we also clearly demonstrate that once the iron is bound within each lobe of hTF, neither anion can displace the other. Additionally, as verified by urea gels and electrospray mass spectrometry, formation of completely homogeneous hTF-anion complexes requires that all iron must first be removed and hTF then reloaded with iron in the presence of either carbonate or oxalate. Significantly, experiments described here show that carbonate is the preferred binding partner; i.e., even if an equal amount of each anion is available during the iron loading process, the hTF-carbonate complex is formed.


Subject(s)
Anemia, Iron-Deficiency/physiopathology , Autistic Disorder/blood , Carbonates/metabolism , Child Development Disorders, Pervasive/blood , Iron/metabolism , Oxalates/blood , Transferrin/chemistry , Transferrin/metabolism , Anemia, Iron-Deficiency/blood , Animals , Cells, Cultured , Cricetinae , Humans , Kinetics
12.
Adv Drug Deliv Rev ; 65(8): 1012-9, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23183585

ABSTRACT

Highly proliferative cells have a dramatically increased need for iron which results in the expression of an increased number of transferrin receptors (TFR). This insight makes the transferrin receptor on these cells an excellent candidate for targeted therapeutics. In this regard, it is critical to understand at a molecular level exactly how the TFR interacts with its ligand, hTF. Understanding of the hTF/TFR pathway could, in theory, maximize the use of this system for development of more effective small molecules or toxin-conjugates to specifically target cancer cells. Many strategies have been attempted with the objective of utilizing the hTF/TFR system to deliver drugs; these include conjugation of a toxin or drug to hTF or direct targeting of the TFR by antibodies. To date, in spite of all of the effort, there is a conspicuous absence of any successful candidate drugs reaching the clinic. We suggest that a lack of quantitative data to determine the basic biochemical properties of the drug carrier and the effects of drug-conjugation on the hTF-TFR interaction may have contributed to the failure to realize the full potential of this system. This review provides some guidelines for developing a more quantitative approach for evaluation of current and future hTF-drug conjugates.


Subject(s)
Drug Carriers/administration & dosage , Receptors, Transferrin/metabolism , Transferrin/metabolism , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Drug Carriers/chemistry , Humans , Receptors, Transferrin/chemistry , Transferrin/chemistry
13.
Curr Top Membr ; 69: 3-35, 2012.
Article in English | MEDLINE | ID: mdl-23046645

ABSTRACT

Essential to iron homeostasis is the transport of iron by the bilobal protein human serum transferrin (hTF). Each lobe (N- and C-lobe) of hTF forms a deep cleft which binds a single Fe(3+). Iron-bearing hTF in the blood binds tightly to the specific transferrin receptor (TFR), a homodimeric transmembrane protein. After undergoing endocytosis, acidification of the endosome initiates the release of Fe(3+) from hTF in a TFR-mediated process. Iron-free hTF remains tightly bound to the TFR at acidic pH; following recycling back to the cell surface, it is released to sequester more iron. Efficient delivery of iron is critically dependent on hTF/TFR interactions. Therefore, identification of the pH-specific contacts between hTF and the TFR is crucial. Recombinant protein production has enabled deconvolution of this complex system. The studies reviewed herein support a model in which pH-induced interrelated events control receptor-stimulated iron release from each lobe of hTF.


Subject(s)
Iron/metabolism , Transferrin/metabolism , Anions/chemistry , Anions/metabolism , Biological Transport , Humans , Hydrogen-Ion Concentration , Kinetics , Protein Binding , Protein Structure, Tertiary , Receptors, Transferrin/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Transferrin/chemistry , Transferrin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...