Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Metab Brain Dis ; 38(2): 437-452, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35316449

ABSTRACT

The reactive dicarbonyl methylglyoxal (MG) behaves as a pro-oxidant agent, causing redox dysfunction and cell death by different mechanisms in mammalian cells. MG is also a mitochondrial toxicant, impairing the oxidative phosphorylation (OXPHOS) system and leading to bioenergetics and redox collapses. MG induces glycation and exerts an important role in neurodegenerative and cardiovascular diseases. Isoorientin (ISO), a C-glucosyl flavone found in Aspalathus linearis, Fagopyrum esculentum, and Passiflora edulis, among others, is an antioxidant and anti-inflammatory molecule. ISO is a potent inducer of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), the master modulator of the redox environment in mammals. We investigated here whether ISO would prevent the mitochondria-related redox and bioenergetics impairments induced by MG in the human neuroblastoma SH-SY5Y cells. The cells were administrated with ISO at 20 µM for 18 h prior to the exposure to MG at 500 µM for further 24 h. It was observed that ISO efficiently prevented the mitochondrial impairments caused by MG. ISO upregulated the activity of the enzyme γ-glutamate-cysteine ligase (γ-GCL), consequently stimulating the synthesis of glutathione (GSH). The inhibition of γ-GCL, adenosine monophosphate-activated protein kinase (AMPK), and phosphoinositide 3-kinase/Akt (PI3K/Akt) suppressed the beneficial effects induced by ISO on the MG-challenged cells. Moreover, silencing of Nrf2 blocked the ISO-dependent γ-GCL and GSH upregulation and the effects on the mitochondria of the MG-challenged cells. Then, ISO caused mitochondrial protection by an AMPK-PI3K/Akt/Nrf2/γ-GCL/GSH-dependent manner in MG-administrated SH-SY5Y cells.


Subject(s)
Neuroblastoma , Proto-Oncogene Proteins c-akt , Animals , Humans , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Glutamate-Cysteine Ligase/metabolism , Glutamate-Cysteine Ligase/pharmacology , Pyruvaldehyde/toxicity , NF-E2-Related Factor 2/metabolism , AMP-Activated Protein Kinases/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Neuroblastoma/metabolism , Glutathione/metabolism , Luteolin/pharmacology , Luteolin/metabolism , Reactive Oxygen Species/metabolism , Mitochondria/metabolism , Cell Line, Tumor , Mammals/metabolism
2.
Metab Brain Dis ; 38(2): 419-435, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35469083

ABSTRACT

Sulforaphane (SFN) promotes protective effects in different cell types. Nonetheless, it remains to be clarified by which mechanism SFN exerts benefits in mammalian cells. Mitochondria are a major source of adenosine triphosphate (ATP) and reactive species in nucleated cells. Mitochondrial impairment result in cellular redox biology disruption, bioenergetic status collapse, and inflammation. Evidence suggest that mitochondrial dysfunction plays a role in neurological disorders. Since a cure was not discovered yet to some of these diseases, investigating strategies to promote mitochondrial protection is pharmacologically relevant and may improve life quality of patients suffering from these maladies. Natural molecules, such as SFN, are potent inducers of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) and, consequently, stimulate the expression of genes whose products, such as heme oxygenase-1 (HO-1), induce cytoprotective actions in mammalian tissues. In this work, we investigated whether SFN (5 µM) would be capable to prevent the dysfunctions caused by chlorpyrifos (CPF) on the human dopaminergic SH-SY5Y cells. Moreover, we examined the effects of a pretreatment with SFN at the same concentration on the mouse microglial BV2 cells stimulated by lipopolysaccharide (LPS) in an experimental model of neuroinflammation. SFN prevented the mitochondrial impairment and the neuroinflammation caused by the chemical stressors in both cell types. Inhibition of heme oxygenase-1 (HO-1) suppressed the mitochondrial protection and anti-inflammatory action afforded by SFN in this experimental model. Overall, SFN promoted cytoprotection by a mechanism dependent on the HO-1 enzyme in the SH-SY5Y and BV2 cells.


Subject(s)
Neuroblastoma , Neuroinflammatory Diseases , Humans , Animals , Mice , Heme Oxygenase-1/metabolism , Microglia/metabolism , NF-E2-Related Factor 2/metabolism , Neuroblastoma/metabolism , Mitochondria/metabolism , Isothiocyanates/pharmacology , Isothiocyanates/therapeutic use , Mammals/metabolism
3.
Neurotox Res ; 40(4): 1043-1056, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35583593

ABSTRACT

The C-glucosyl flavone isoorientin (ISO) is obtained by humans from the diet and exhibits several cytoprotective effects, as demonstrated in different experimental models. However, it was not previously shown whether ISO would be able to prevent mitochondrial impairment in cells exposed to a chemical stressor. Thus, we treated the human neuroblastoma SH-SY5Y cells with ISO (0.5-20 µM) for 18 h before a challenge with chlorpyrifos (CPF) at 100 µM for additional 24 h. We observed that ISO prevented the CPF-induced lipid peroxidation and protein carbonylation and nitration in the membranes of mitochondria extracted from CPF-treated cells. ISO also attenuated the CPF-elicited increase in the production of reactive species in this experimental model. Moreover, ISO prevented the CPF-induced disruption in the activity of components of the oxidative phosphorylation (OXPHOS) system in the SH-SY5Y cells. ISO also promoted an anti-inflammatory action in the cells exposed to CPF. CPF caused a decrease in the activity of the enzyme heme oxygenase-1 (HO-1), a cytoprotective agent. On the other hand, ISO upregulated HO-1 activity in SH-SY5Y cells. Inhibition of HO-1 by zinc protoporphyrin-IX (ZnPP-IX) suppressed the cytoprotection induced by ISO in the CPF-treated cells. Besides, silencing of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) abolished the ISO-induced HO-1 upregulation and mitochondrial benefits induced by this flavone on the CPF-challenged cells. Thus, ISO protected mitochondria of the CPF-treated cells by an Nrf2/HO-1-dependent fashion in the SH-SY5Y cells.


Subject(s)
Chlorpyrifos , Neuroblastoma , Cell Line, Tumor , Cell Survival , Chlorpyrifos/toxicity , Heme Oxygenase-1/metabolism , Humans , Inflammation/metabolism , Luteolin/metabolism , Luteolin/pharmacology , Mitochondria , NF-E2-Related Factor 2/metabolism , Neuroblastoma/metabolism , Oxidation-Reduction
4.
Metab Brain Dis ; 37(3): 607-617, 2022 03.
Article in English | MEDLINE | ID: mdl-35000053

ABSTRACT

Mitochondria are a primary source and a target of reactive oxygen species (ROS). Increased mitochondrial production of ROS is associated with bioenergetics decline, cell death, and inflammation. Here we investigated whether a pretreatment (for 24 h) with sesamol (SES; at 12.5-50 µM) would be efficient in preventing the mitochondrial collapse induced by hydrogen peroxide (H2O2, at 300 µM) in the human neuroblastoma SH-SY5Y cell line. We have found that a pretreatment with SES at 25 µM decreased the effects of H2O2 on lipid peroxidation, protein carbonylation, and protein nitration in membranes obtained from the mitochondria isolated from the SH-SY5Y cells. In this regard, SES pretreatment decreased the production of superoxide anion radical (O2-•) by the mitochondria of H2O2-treated cells. SES also prevented the mitochondrial dysfunction induced by H2O2, as assessed by analyzing the activity of the complexes I and V. The H2O2-induced reduction in the production of adenosine triphosphate (ATP) was also prevented by SES. The levels of the pro-inflammatory cytokines interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α), as well as the activity of the transcription factor nuclear factor-κB (NF-κB) were downregulated by the SES pretreatment in the H2O2-challenged cells. Silencing of the nuclear factor erythroid 2-related factor 2 (Nrf2) transcription factor abolished the protection induced by SES regarding mitochondrial function and inflammation. Thus, SES depends on Nrf2 to promote mitochondrial protection in cells facing redox impairment.


Subject(s)
NF-E2-Related Factor 2 , Neuroblastoma , Benzodioxoles , Cell Line, Tumor , Cell Survival , Humans , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/toxicity , Mitochondria/metabolism , NF-E2-Related Factor 2/metabolism , Neuroblastoma/metabolism , Phenols , Reactive Oxygen Species/metabolism
5.
Neurotox Res ; 39(5): 1495-1510, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34351569

ABSTRACT

Tanshinone I (T-I, C18H12O3) is a diterpene found in Salvia miltiorrhiza Bunge (Danshen) and promotes cytoprotection in several experimental models. Chlorpyrifos (CPF) is an agrochemical that causes bioenergetics failure, redox impairment, inflammation, and cell death in animal tissues. Here, we investigated whether T-I would be able to prevent the consequences resulting from the exposure of the human dopaminergic SH-SY5Y cells to CPF. We found that a pretreatment with T-I at 2.5 µM for 2 h suppressed lipid peroxidation and protein carbonylation and nitration on the membranes of mitochondria extracted from the CPF-treated cells. Also, T-I reduced the production of radical superoxide (O2-•) by the mitochondria of the CPF-challenged cells. The production of nitric oxide (NO•) and hydrogen peroxide (H2O2) was also decreased by T-I in the cells exposed to CPF. The CPF-induced decrease in the activity of the complexes I-III, II-III, and V was abolished by a pretreatment with T-I. Loss of mitochondrial membrane potential (ΔΨm) and reduction in the production of adenosine triphosphate (ATP) were also prevented by T-I in the CPF-treated cells. T-I also induced anti-inflammatory effects in the CPF-treated cells by decreasing the levels of interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α) and the activity of the nuclear factor-κB (NF-κB). Inhibition of heme oxygenase-1 (HO-1) or silencing of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) blocked the T-I-promoted mitochondrial protection and anti-inflammatory action. Overall, T-I depended on the Nrf2/HO-1 axis to prevent the deleterious effects caused by CPF in this experimental model.


Subject(s)
Abietanes/pharmacology , Chlorpyrifos/toxicity , Dopaminergic Neurons/drug effects , Energy Metabolism/drug effects , Mitochondria/drug effects , Salvia miltiorrhiza , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/physiology , Dopaminergic Neurons/metabolism , Dose-Response Relationship, Drug , Energy Metabolism/physiology , Humans , Immunosuppressive Agents/pharmacology , Insecticides/toxicity , Mitochondria/metabolism , Oxidation-Reduction/drug effects
6.
Metab Brain Dis ; 36(8): 2377-2391, 2021 12.
Article in English | MEDLINE | ID: mdl-34338973

ABSTRACT

Chlorpyrifos (CPF), an insecticide, induces pro-oxidant, pro-inflammatory, and pro-apoptotic effects in animal cells. Contamination with CPF occurs not only in farms, since CPF is found in the food consumed in homes. Recently, it was demonstrated that CPF affects the mitochondria, inhibiting components of the electron transfer chain (ETC), causing loss of mitochondrial membrane potential (MMP), and reducing the synthesis of adenosine triphosphate (ATP) by the Complex V. Pinocembrin (PB) is found in propolis and exhibits antioxidant, anti-inflammatory, and anti-apoptotic effects in mammalian cells. PB is a potent inducer of the nuclear factor erythroid 2-related factor 2 (Nrf2), which is a major transcription factor controlling the expression of heme oxygease-1 (HO-1), among others. In the present work, we investigated whether PB would be able to prevent the mitochondrial and immune dysfunctions in the human neuroblastoma SH-SY5Y cells exposed to CPF. PB was tested at 1-25 µM for 4 h before the administration of CPF at 100 µM for additional 24 h. We found that PB prevented the CPF-induced inhibition of ETC, loss of MMP, and decline in the ATP synthesis. PB also promoted anti-inflammatory actions in this experimental model. Silencing of Nrf2 or inhibition of HO-1 suppressed the PB-induced effects in the CPF-challenged cells. Thus, PB promoted beneficial effects by a mechanism dependent on the Nrf2/HO-1/CO + BR axis in the CPF-treated cells.


Subject(s)
Chlorpyrifos , Flavanones , Heme Oxygenase-1 , Cell Line, Tumor , Cell Survival , Chlorpyrifos/toxicity , Down-Regulation , Flavanones/pharmacology , Heme/metabolism , Heme Oxygenase-1/metabolism , Humans , Inflammation/chemically induced , Inflammation/drug therapy , Mitochondria/drug effects , Mitochondria/metabolism , NF-E2-Related Factor 2/metabolism
7.
Eur J Pharmacol ; 908: 174336, 2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34265290

ABSTRACT

Mitochondrial dysfunction has been viewed in several diseases, including neurological disorders. In the glutamate (GLU)-mediated excitotoxicity, it has been described mitochondrial impairment, disrupted redox environment, and increased rates of cell death in the affected brain areas. Astaxanthin (AST) is a potent antioxidant and anti-inflammatory xanthophyll that also promotes beneficial mitochondria-related effects in brain cells. However, it is not completely clear how AST would be able to promote mitochondrial protection in those cell types. Thus, we investigated here how AST would protect mitochondria in the dopaminergic SH-SY5Y cell line exposed to GLU. AST was administrated to the cells at 1-40 µM for 24 h prior to the exposure to GLU at 80 mM for additional 24 h. AST prevented the GLU-induced impairment in the activity of the Complexes I and V, the loss in mitochondrial membrane potential (MMP), and the decline in the synthesis of ATP. AST also induced an antioxidant effect in the membranes of mitochondria obtained from the GLU-treated SH-SY5Y cells. Inhibition of the enzyme heme oxygenase-1 (HO-1) or silencing of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) suppressed the AST-promoted cellular and mitochondrial protection. Either tricarbonyldichlororuthenium(II) dimer (CORM-2, a source of carbon monoxide - CO) or bilirubin (BR), that are products of the HO-1-biliverdin reductase (BVR) axis, blocked some of the effects caused by GLU in the SH-SY5Y cells. Overall, our data demonstrate that AST prevented mitochondrial dysfunction by a mechanism related to the Nrf2/HO-1 axis in GLU-challenged cells.


Subject(s)
Heme Oxygenase-1 , Mitochondria , NF-E2-Related Factor 2 , Xanthophylls , Bilirubin , Carbon Monoxide , Cell Line, Tumor , Glutamic Acid , Humans , Mitochondria/drug effects , Xanthophylls/pharmacology
8.
Neurochem Int ; 146: 105024, 2021 06.
Article in English | MEDLINE | ID: mdl-33775716

ABSTRACT

The mitochondria are the major source of reactive species in the mammalian cells. Hydrogen peroxide (H2O2) is a potent inducer of redox impairment by a mechanism, at least in part, dependent on its ability to impair mitochondrial function. H2O2 plays an important role in several pathological conditions, including neurodegeneration and cardiovascular diseases. Astaxanthin (AST) is a xanthophyll that may be found in microalgae, crustaceans, and salmon and exhibits antioxidant and anti-inflammatory effects in different cell types. Even though there is evidence pointing to a role for AST as mitochondrial protectant agent, it was not clearly demonstrated how this xanthophyll attenuates mitochondrial stress. Therefore, we investigated here whether and how AST would be able to prevent the H2O2-induced mitochondrial dysfunction in the human neuroblastoma SH-SY5Y cells. We found that AST (20 µM) prevented the H2O2-induced loss of mitochondrial membrane potential (MMP) and decrease in the activity of the Complexes I and V. AST pretreatment blocked the mitochondria-related pro-apoptotic effects elicited by H2O2. AST upregulated the enzyme heme oxygenase-1 (HO-1) and the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) by a mechanism dependent on the phosphoinositide 3-kinase/Akt (PI3K/Akt) signaling pathway. Inhibition of the PI3K/Akt or of the HO-1 enzyme abolished the AST-induced mitochondrial protection in cells challenged with H2O2. Silencing of Nrf2 caused similar effects. Thus, we suggest that AST promotes mitochondrial protection by a mechanism dependent on the PI3K/Akt/Nrf2/HO-1 signaling pathway in SH-SY5Y cells exposed to H2O2.


Subject(s)
Heme Oxygenase-1/metabolism , Hydrogen Peroxide/toxicity , Mitochondria/metabolism , NF-E2-Related Factor 2/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/physiology , Dose-Response Relationship, Drug , Fibrinolytic Agents/pharmacology , Heme Oxygenase-1/antagonists & inhibitors , Humans , Mitochondria/drug effects , NF-E2-Related Factor 2/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Signal Transduction/drug effects , Signal Transduction/physiology , Xanthophylls/pharmacology
9.
Metab Brain Dis ; 36(3): 471-481, 2021 03.
Article in English | MEDLINE | ID: mdl-33411218

ABSTRACT

Methylglyoxal (MG) is an endogenously produced toxicant that induces mitochondrial dysfunction leading to impaired redox biology homeostasis, bioenergetics collapse, and cell death in mammalian cells. However, MG toxicity is particularly relevant to neurons and glia given their chemical and metabolic characteristics. Here, we have investigated whether a pretreatment with carnosic acid (CA) would be able to promote mitochondrial protection in human neuroblastoma SH-SY5Y cells exposed to MG. We found that a pretreatment with CA at 1 µM for 12 h prevented the MG-induced lipid peroxidation and protein carbonylation and nitration in the membranes of mitochondria obtained from the SH-SY5Y cells. CA also prevented the MG-elicited Complexes I and V dysfunction, adenosine triphosphate (ATP) levels decline, and loss of mitochondrial membrane potential (MMP). Moreover, CA also reduced the mitochondrial production of the radical anion superoxide (O2-•) in the MG-challenged cells. We found that CA upregulated the synthesis of glutathione (GSH) by increasing the activity of the γ-glutamylcysteine ligase (γ-GCL). Inhibition of the GSH synthesis by buthionine sulfoximine (BSO) abolished the CA-induced mitochondrial protection. Besides, inhibition of the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway, as well as silencing of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), suppressed the CA-stimulated protection and the synthesis of GSH. Thus, CA promoted mitochondrial protection by a PI3K/Akt/Nrf2/γ-GCL/GSH axis in MG-treated SH-SY5Y cells.


Subject(s)
Abietanes/pharmacology , Glutathione/metabolism , Mitochondria/drug effects , Neurons/drug effects , Pyruvaldehyde/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Electron Transport Complex I/metabolism , Humans , Membrane Potential, Mitochondrial/drug effects , Mitochondria/metabolism , NF-E2-Related Factor 2/metabolism , Neurons/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Superoxides/metabolism
10.
Neurochem Res ; 46(4): 740-754, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33392911

ABSTRACT

Methylglyoxal (MG) is a reactive dicarbonyl presenting both endogenous (e.g. glycolysis) and exogenous (e.g. food cooking) sources. MG induces neurotoxicity, at least in part, by affecting mitochondrial function, including a decline in the oxidative phosphorylation (OXPHOS) system activity, bioenergetics failure, and redox disturbances. Sulforaphane (SFN) is an isothiocyanate found mainly in cruciferous vegetables and exerts antioxidant and anti-inflammatory effects in mammalian cells. SFN also decreases mitochondrial vulnerability to several chemical stressors. SFN is a potent activator of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), which is a master regulator of the mammalian redox biology. Here, we have investigated whether and how SFN would be able to prevent the MG-induced mitochondrial collapse in the human neuroblastoma SH-SY5Y cells. The cells were exposed to SFN at 5 µM for 24 h prior to the administration of MG at 500 µM for additional 24 h. We found that SFN prevented the MG-induced OXPHOS dysfunction and mitochondrial redox impairment. SFN stimulated the activity of the enzyme γ-glutamylcysteine ligase (γ-GCL), leading to increased synthesis of glutathione (GSH). Inhibition of γ-GCL with buthionine sulfoximine (BSO) or silencing of Nrf2 using small interfering RNA (siRNA) against this transcription factor reduced the levels of GSH and abolished the mitochondrial protection promoted by SFN in the MG-treated cells. Thus, SFN protected mitochondria of the MG-challenged cells by a mechanism involving the Nrf2/γ-GCL/GSH axis.


Subject(s)
Glutamate-Cysteine Ligase/metabolism , Glutathione/metabolism , Isothiocyanates/pharmacology , Mitochondria/drug effects , NF-E2-Related Factor 2/metabolism , Pyruvaldehyde/toxicity , Sulfoxides/pharmacology , Antioxidants/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Enzyme Activators/pharmacology , Humans , Lipid Peroxidation/drug effects , Protein Carbonylation/drug effects
11.
J Zhejiang Univ Sci B ; 21(4): 263-279, 2020.
Article in English | MEDLINE | ID: mdl-32253837

ABSTRACT

The organosulfur compound sulforaphane (SFN; C6H11NOS2) is a potent cytoprotective agent promoting antioxidant, anti-inflammatory, antiglycative, and antimicrobial effects in in vitro and in vivo experimental models. Mitochondria are the major site of adenosine triphosphate (ATP) production due to the work of the oxidative phosphorylation (OXPHOS) system. They are also the main site of reactive oxygen species (ROS) production in nucleated human cells. Mitochondrial impairment is central in several human diseases, including neurodegeneration and metabolic disorders. In this paper, we describe and discuss the effects and mechanisms of action by which SFN modulates mitochondrial function and dynamics in mammalian cells. Mitochondria-related pro-apoptotic effects promoted by SFN in tumor cells are also discussed. SFN may be considered a cytoprotective agent, at least in part, because of the effects this organosulfur agent induces in mitochondria. Nonetheless, there are certain points that should be addressed in further experiments, indicated here as future directions, which may help researchers in this field of research.


Subject(s)
Brain/drug effects , Isothiocyanates/pharmacology , Mitochondria/drug effects , Animals , Antioxidants/pharmacology , Apoptosis/drug effects , Brain/ultrastructure , Carbon Monoxide Poisoning/drug therapy , Carbon Monoxide Poisoning/metabolism , Cytoprotection , Humans , Membrane Potential, Mitochondrial/drug effects , Mitochondria/metabolism , Sulfoxides
SELECTION OF CITATIONS
SEARCH DETAIL
...