Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Br J Pharmacol ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38812100

ABSTRACT

BACKGROUND: More than 80% of patients may experience acute pain after a surgical procedure, and this is often refractory to pharmacological intervention. The identification of new targets to treat postoperative pain is necessary. There is an association of polymorphisms in the Cav2.3 gene with postoperative pain and opioid consumption. Our study aimed to identify Cav2.3 as a potential target to treat postoperative pain and to reduce opioid-related side effects. EXPERIMENTAL APPROACH: A plantar incision model was established in adult male and female C57BL/6 mice. Cav2.3 expression was detected by qPCR and suppressed by siRNA treatment. The antinociceptive efficacy and safety of a Cav2.3 blocker-alone or together with morphine-was also assessed after surgery. KEY RESULTS: Paw incision in female and male mice caused acute nociception and increased Cav2.3 mRNA expression in the spinal cord but not in the incised tissue. Intrathecal treatment with siRNA against Cav2.3, but not with a scrambled siRNA, prevented the development of surgery-induced nociception in both male and female mice, with female mice experiencing long-lasting effects. High doses of i.t. SNX-482, a Cav2.3 channel blocker, or morphine injected alone, reversed postoperative nociception but also induced side effects. A combination of lower doses of morphine and SNX-482 mediated a long-lasting reversal of postsurgical pain in female and male mice. CONCLUSION: Our results demonstrate that Cav2.3 has a pronociceptive role in the induction of postoperative pain, indicating that it is a potential target for the development of therapeutic approaches for the treatment of postoperative pain.

2.
Neuroscience ; 541: 64-76, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38307407

ABSTRACT

Corticosteroids are commonly used in the treatment of inflammatory low back pain, and their nominal target is the glucocorticoid receptor (GR) to relieve inflammation. They can also have similar potency at the mineralocorticoid receptor (MR). The MR has been shown to be widespread in rodent and human dorsal root ganglia (DRG) neurons and non-neuronal cells, and when MR antagonists are administered during a variety of inflammatory pain models in rats, pain measures are reduced. In this study we selectively knockout (KO) the MR in sensory neurons to determine the role of MR in sensory neurons of the mouse DRG in pain measures as MR antagonism during the local inflammation of the DRG (LID) pain model. We found that MR antagonism using eplerenone reduced evoked mechanical hypersensitivity during LID, but MR KO in paw-innervating sensory neurons only did not. This could be a result of differences between prolonged (MR KO) versus acute (drug) MR block or an indicator that non-neuronal cells in the DRG are driving the effect of MR antagonists. MR KO unmyelinated C neurons are more excitable under normal and inflamed conditions, while MR KO does not affect excitability of myelinated A cells. MR KO in sensory neurons causes a reduction in overall GR mRNA but is protective against reduction of the anti-inflammatory GRα isoform during LID. These effects of MR KO in sensory neurons expanded our understanding of MR's functional role in different neuronal subtypes (A and C neurons), and its interactions with the GR.


Subject(s)
Low Back Pain , Mineralocorticoid Receptor Antagonists , Rats , Mice , Humans , Animals , Mineralocorticoid Receptor Antagonists/pharmacology , Mineralocorticoid Receptor Antagonists/therapeutic use , Receptors, Mineralocorticoid , Rats, Sprague-Dawley , Sensory Receptor Cells , Ganglia, Spinal , Inflammation/drug therapy
3.
Brain Behav Immun ; 117: 51-65, 2024 03.
Article in English | MEDLINE | ID: mdl-38190983

ABSTRACT

Microglia, resident immune cells in the central nervous system, play a role in neuroinflammation and the development of neuropathic pain. We found that the stimulator of interferon genes (STING) is predominantly expressed in spinal microglia and upregulated after peripheral nerve injury. However, mechanical allodynia, as a marker of neuropathic pain following peripheral nerve injury, did not require microglial STING expression. In contrast, STING activation by specific agonists (ADU-S100, 35 nmol) significantly alleviated neuropathic pain in male mice, but not female mice. STING activation in female mice leads to increase in proinflammatory cytokines that may counteract the analgesic effect of ADU-S100. Microglial STING expression and type I interferon-ß (IFN-ß) signaling were required for the analgesic effects of STING agonists in male mice. Mechanistically, downstream activation of TANK-binding kinase 1 (TBK1) and the production of IFN-ß, may partly account for the analgesic effect observed. These findings suggest that STING activation in spinal microglia could be a potential therapeutic intervention for neuropathic pain, particularly in males.


Subject(s)
Neuralgia , Peripheral Nerve Injuries , Animals , Female , Male , Mice , Analgesics , Antibodies , Microglia , Peripheral Nerve Injuries/complications
4.
Neurosci Bull ; 39(9): 1363-1374, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37165177

ABSTRACT

Although sympathetic blockade is clinically used to treat pain, the underlying mechanisms remain unclear. We developed a localized microsympathectomy (mSYMPX), by cutting the grey rami entering the spinal nerves near the rodent lumbar dorsal root ganglia (DRG). In a chemotherapy-induced peripheral neuropathy model, mSYMPX attenuated pain behaviors via DRG macrophages and the anti-inflammatory actions of transforming growth factor-ß (TGF-ß) and its receptor TGF-ßR1. Here, we examined the role of TGF-ß in sympathetic-mediated radiculopathy produced by local inflammation of the DRG (LID). Mice showed mechanical hypersensitivity and transcriptional and protein upregulation of TGF-ß1 and TGF-ßR1 three days after LID. Microsympathectomy prevented mechanical hypersensitivity and further upregulated Tgfb1 and Tgfbr1. Intrathecal delivery of TGF-ß1 rapidly relieved the LID-induced mechanical hypersensitivity, and TGF-ßR1 antagonists rapidly unmasked the mechanical hypersensitivity after LID+mSYMPX. In situ hybridization showed that Tgfb1 was largely expressed in DRG macrophages, and Tgfbr1 in neurons. We suggest that TGF-ß signaling is a general underlying mechanism of local sympathetic blockade.


Subject(s)
Radiculopathy , Transforming Growth Factor beta , Mice , Animals , Receptor, Transforming Growth Factor-beta Type I/metabolism , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/pharmacology , Transforming Growth Factor beta1/metabolism , Hyperalgesia/metabolism , Radiculopathy/drug therapy , Radiculopathy/metabolism , Pain/metabolism , Analgesics/pharmacology , Ganglia, Spinal/metabolism
5.
Mol Neurobiol ; 60(5): 2954-2968, 2023 May.
Article in English | MEDLINE | ID: mdl-36754911

ABSTRACT

Some people living with HIV present painful sensory neuropathy (HIV-SN) that is pharmacoresistant, sex-associated, and a major source of morbidity. Since the specific mechanisms underlying HIV-SN are not well understood, the aim of our study was to characterize a novel model of painful HIV-SN by combining the HIV-1 gp120 protein and the antiretroviral stavudine (d4T) in mice and to investigate the pronociceptive role of the family 2 voltage-gated calcium channel (VGCC) α1 subunit (Cav2.X channels) in such a model. HIV-SN was induced in male and female C57BL/6 mice by administration of gp120 and/or d4T and detected by a battery of behavior tests and by immunohistochemistry. The role of Cav2.X channels was assessed by the treatment with selective blockers and agonists as well as by mRNA detection. Repeated administration with gp120 and/or d4T produced long-lasting touch-evoked painful-like behaviors (starting at 6 days, reaching a maximum on day 13, and lasting up to 28 days after treatment started), with a greater intensity in female mice treated with the combination of gp120 + d4T. Moreover, gp120 + d4T treatment reduced the intraepidermal nerve fibers and well-being of female mice, without altering other behaviors. Mechanistically, gp120 + d4T treatment induced Cav2.1, 2.2, and 2.3 transcriptional increases in the dorsal root ganglion and the Cav2.X agonist-induced nociception. Accordingly, intrathecal selective Cav2.2 blockade presented longer and better efficacy in reversing the hyperalgesia induced by gp120 + d4T treatment compared with Cav2.1 or Cav2.3, but also presented the worst safety (inducing side effects at effective doses). We conclude that the family 2 calcium channels (Cav2.X) exert a critical pronociceptive role in a novel mouse model of HIV-SN.


Subject(s)
Chronic Pain , HIV Infections , Peripheral Nervous System Diseases , Male , Mice , Female , Animals , Stavudine/adverse effects , Mice, Inbred C57BL , Peripheral Nervous System Diseases/chemically induced , Calcium Channels, N-Type/metabolism , HIV Infections/drug therapy , Chronic Pain/chemically induced
6.
Neuron ; 110(2): 209-220.e6, 2022 01 19.
Article in English | MEDLINE | ID: mdl-34752775

ABSTRACT

Spontaneous pain refers to pain occurring without external stimuli. It is a primary complaint in chronic pain conditions and remains difficult to treat. Moreover, the mechanisms underlying spontaneous pain remain poorly understood. Here we employed in vivo imaging of dorsal root ganglion (DRG) neurons and discovered a distinct form of abnormal spontaneous activity following peripheral nerve injury: clusters of adjacent DRG neurons firing synchronously and sporadically. The level of cluster firing correlated directly with nerve injury-induced spontaneous pain behaviors. Furthermore, we demonstrated that cluster firing is triggered by activity of sympathetic nerves, which sprout into DRGs after injury, and identified norepinephrine as a key neurotransmitter mediating this unique firing. Chemogenetic and pharmacological manipulations of sympathetic activity and norepinephrine receptors suggest that they are necessary and sufficient for DRG cluster firing and spontaneous pain behavior. Therefore, blocking sympathetically mediated cluster firing may be a new paradigm for treating spontaneous pain.


Subject(s)
Ganglia, Spinal , Spinal Nerves , Ganglia, Spinal/physiology , Humans , Pain , Sensory Receptor Cells , Spinal Nerves/injuries , Sympathetic Nervous System/physiology
7.
Exp Parasitol ; 230: 108159, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34563508

ABSTRACT

Trypanosoma rangeli is a non-virulent hemoflagellate parasite infecting humans, wild and domestic mammals in Central and Latin America. The share of genotypic, phenotypic, and biological similarities with the virulent, human-infective T. cruzi and T. brucei, allows comparative studies on mechanisms of pathogenesis. In this study, investigation of the T. rangeli Arginine Kinase (TrAK) revealed two highly similar copies of the AK gene in this taxon, and a distinct expression profile and activity between replicative and infective forms. Although TrAK expression seems stable during epimastigotes growth, the enzymatic activity increases during the exponential growth phase and decreases from the stationary phase onwards. No differences were observed in activity or expression levels of TrAK during in vitro differentiation from epimastigotes to infective forms, and no detectable AK expression was observed for blood trypomastigotes. Overexpression of TrAK by T. rangeli showed no effects on the in vitro growth pattern, differentiation to infective forms, or infectivity to mice and triatomines. Although differences in TrAK expression and activity were observed among T. rangeli strains from distinct genetic lineages, our results indicate an up-regulation during parasite replication and putative post-translational myristoylation of this enzyme. We conclude that up-regulation of TrAK activity in epimastigotes appears to improve proliferation fitness, while reduced TrAK expression in blood trypomastigotes may be related to short-term and subpatent parasitemia in mammalian hosts.


Subject(s)
Arginine Kinase/metabolism , Protein Processing, Post-Translational , Trypanosoma cruzi/enzymology , Trypanosoma rangeli/enzymology , Amino Acid Sequence , Animals , Arginine Kinase/biosynthesis , Arginine Kinase/classification , Arginine Kinase/genetics , Blotting, Western , DNA, Protozoan/isolation & purification , Electrophoresis, Gel, Two-Dimensional , Female , Flagella/enzymology , Fluorescent Antibody Technique, Indirect , Mice , Mice, Inbred BALB C , Phylogeny , Sequence Alignment , Trypanosoma cruzi/classification , Trypanosoma cruzi/genetics , Trypanosoma cruzi/pathogenicity , Trypanosoma rangeli/classification , Trypanosoma rangeli/genetics , Trypanosoma rangeli/pathogenicity , Up-Regulation , Virulence
8.
Pharmaceuticals (Basel) ; 14(8)2021 Aug 23.
Article in English | MEDLINE | ID: mdl-34451927

ABSTRACT

Headaches are frequently described in progressive multiple sclerosis (PMS) patients, but their mechanism remains unknown. Transient receptor potential ankyrin 1 (TRPA1) was involved in neuropathic nociception in a model of PMS induced by experimental autoimmune encephalomyelitis (PMS-EAE), and TRPA1 activation causes periorbital and facial nociception. Thus, our purpose was to observe the development of periorbital mechanical allodynia (PMA) in a PMS-EAE model and evaluate the role of TRPA1 in periorbital nociception. Female PMS-EAE mice elicited PMA from day 7 to 14 days after induction. The antimigraine agents olcegepant and sumatriptan were able to reduce PMA. The PMA was diminished by the TRPA1 antagonists HC-030031, A-967079, metamizole and propyphenazone and was absent in TRPA1-deficient mice. Enhanced levels of TRPA1 endogenous agonists and NADPH oxidase activity were detected in the trigeminal ganglion of PMS-EAE mice. The administration of the anti-oxidants apocynin (an NADPH oxidase inhibitor) or alpha-lipoic acid (a sequestrant of reactive oxygen species), resulted in PMA reduction. These results suggest that generation of TRPA1 endogenous agonists in the PMS-EAE mouse model may sensitise TRPA1 in trigeminal nociceptors to elicit PMA. Thus, this ion channel could be a potential therapeutic target for the treatment of headache in PMS patients.

9.
Brain Res Bull ; 175: 1-15, 2021 10.
Article in English | MEDLINE | ID: mdl-34280479

ABSTRACT

Progressive multiple sclerosis (PMS) is a neurological disease associated with the development of depression and anxiety, but treatments available are unsatisfactory. The transient receptor potential ankyrin 1 (TRPA1) is a cationic channel activated by reactive compounds, and the blockage of this receptor can reduce depression- and anxiety-like behaviors in naive mice. Thus, we investigated the role of TRPA1 in depression- and anxiety-like behaviors in a PMS model in mice. PMS model was induced in C57BL/6 female mice by the experimental autoimmune encephalomyelitis (EAE). Nine days after the PMS-EAE induction, behavioral tests (tail suspension and elevated plus maze tests) were performed to verify the effects of sertraline (positive control), selective TRPA1 antagonist (A-967,079), and antioxidants (α-lipoic acid and apocynin). The prefrontal cortex and hippocampus were collected to evaluate biochemical and inflammatory markers. PMS-EAE induction did not cause locomotor changes but triggered depression- and anxiety-like behaviors, which were reversed by sertraline, A-967,079, α-lipoic acid, or apocynin treatments. The neuroinflammatory markers (AIF1, GFAP, IL-1ß, IL-17, and TNF-α) were increased in mice's hippocampus. Moreover, this model did not alter TRPA1 RNA expression levels in the hippocampus but decrease TRPA1 levels in the prefrontal cortex. Moreover, PMS-EAE induced an increase in NADPH oxidase and superoxide dismutase activities and TRPA1 endogenous agonist levels (hydrogen peroxide and 4-hydroxynonenal). TRPA1 plays a fundamental role in depression- and anxiety-like behaviors in a PMS-EAE model; thus, it could be a possible pharmacological target for treating these symptoms in PMS.


Subject(s)
Anxiety/genetics , Anxiety/psychology , Behavior, Animal , Depression/genetics , Depression/psychology , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/psychology , Multiple Sclerosis, Chronic Progressive/genetics , Multiple Sclerosis, Chronic Progressive/psychology , TRPA1 Cation Channel/genetics , Animals , Antioxidants/pharmacology , Female , Hindlimb Suspension , Hippocampus/drug effects , Hippocampus/metabolism , Inflammation Mediators/metabolism , Mice , Mice, Inbred C57BL , Oximes/pharmacology , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Selective Serotonin Reuptake Inhibitors/pharmacology , Sertraline/pharmacology , TRPA1 Cation Channel/antagonists & inhibitors
10.
J Pain ; 22(8): 996-1013, 2021 08.
Article in English | MEDLINE | ID: mdl-33774154

ABSTRACT

Chemotherapy-Induced Peripheral Neuropathy (CIPN) is a common, difficult-to-treat, and dose-limiting side effect associated with Oxaliplatin (OXA) treatment. In this study, we evaluated the effect of three antioxidants - namely N-acetylcysteine, α-lipoic acid and vitamin E - upon nociceptive parameters and antitumor efficacy of OXA in a tumor-bearing Swiss mice model. Oral treatment with antioxidants inhibited both mechanical and cold allodynia when concomitantly administrated with OXA (preventive protocol), as well as in animals with previously established CIPN (therapeutic protocol). OXA increased Reactive Oxygen Species (ROS) production and lipoperoxidation, and augmented the content of pro-inflammatory cytokines (IL-1ß and TNF-α) and expression of the astrocytic marker Gfap mRNA in the spinal cord. Antioxidants decreased ROS production and lipoperoxidation, and abolished neuroinflammation in OXA-treated animals. Toll-like receptor 4 (Tlr4) and inflammasome enzyme caspase-1/11 knockout mice treated with OXA showed reduced levels of pro-inflammatory cytokines (but not oxidative stress) in the spinal cord, which were associated with resistance to OXA-induced mechanical allodynia. Lastly, antioxidants affected neither antitumor activity nor hematological toxicity of OXA in vivo. The herein presented results are provocative for further evaluation of antioxidants in clinical management of chemotherapy-induced peripheral neuropathy. PERSPECTIVE: This study reports preventive and therapeutic efficacy of orally administrated antioxidants (N-acetylcysteine, α-lipoic-acid and Vitamin-E) in alleviating oxaliplatin-induced peripheral neuropathy in tumor-bearing mice. Antioxidants' anti-nociceptive effects are associated with inhibition of ROS-dependent neuroinflammation, and occur at no detriment of OXA antitumor activity, therefore indicating a translational potential of these compounds.


Subject(s)
Antineoplastic Agents/adverse effects , Antioxidants/pharmacology , Hyperalgesia , Neoplasms/drug therapy , Neuroinflammatory Diseases , Oxaliplatin/adverse effects , Oxidative Stress/drug effects , Peripheral Nervous System Diseases , Spinal Cord , Animals , Disease Models, Animal , Hyperalgesia/chemically induced , Hyperalgesia/drug therapy , Hyperalgesia/prevention & control , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neuroinflammatory Diseases/chemically induced , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/immunology , Neuroinflammatory Diseases/metabolism , Peripheral Nervous System Diseases/chemically induced , Peripheral Nervous System Diseases/drug therapy , Peripheral Nervous System Diseases/prevention & control , Spinal Cord/drug effects , Spinal Cord/immunology , Spinal Cord/metabolism , Toll-Like Receptor 4
11.
Brain Res ; 1764: 147438, 2021 08 01.
Article in English | MEDLINE | ID: mdl-33753067

ABSTRACT

Central sensitization (CS) is characteristic of difficult to treat painful conditions, such as fibromyalgia and neuropathies and have sexual dimorphism involved. The calcium influx in nociceptive neurons is a key trigger for CS and the role of Cav2.1 and Cav2.2 voltage gated calcium channels (VGCC) in this role were evidenced with the use of ω-agatoxin IVA and ω-agatoxin MVIIA blockers, respectively. However, the participation of the α1 subunit of the voltage-gated channel Cav2.3, which conducts R-type currents, in CS is unknown. Furthermore, the role of sexual differences in painful conditions is still poorly understood. Thus, we investigated the role of Cav2.3 in capsaicin-induced secondary hyperalgesia in mice, which serve as a CS model predictive of the efficacy of novel analgesic drugs. Capsaicin injection in C57BL/6 mice caused secondary hyperalgesia from one to five hours after injection, and the effects were similar in male and female mice. In female but not male mice, intrathecal treatment with the Cav2.3 inhibitor SNX-482 partially and briefly reversed secondary hyperalgesia at a dose (300 pmol/site) that did not cause adverse effects. Moreover, Cav2.3 expression in the dorsal root ganglia (DRG) and spinal cord was reduced by intrathecal treatment with an antisense oligonucleotide (ASO) targeting Cav2.3 in female and male mice. However, ASO treatment was able to provide a robust and durable prevention of secondary hyperalgesia caused by capsaicin in female mice, but not in male mice. Thus, our results demonstrate that Cav2.3 inhibition, especially in female mice, has a relevant impact on a model of CS. Our results provide a proof of concept for Cav2.3 as a molecular target. In addition, the result associated to the role of differences in painful conditions linked to sex opens a range of possibilities to be explored and needs more attention. Thus, the relevance of testing Cav2.3 inhibition or knockdown in clinically relevant pain models is needed.


Subject(s)
Calcium Channels, R-Type/genetics , Cation Transport Proteins/genetics , Central Nervous System Sensitization/genetics , Hyperalgesia/genetics , Animals , Calcium Channel Blockers/pharmacology , Calcium Channels, R-Type/drug effects , Capsaicin , Cation Transport Proteins/drug effects , Central Nervous System Sensitization/drug effects , Dose-Response Relationship, Drug , Female , Ganglia, Spinal/metabolism , Gene Knockdown Techniques , Hyperalgesia/chemically induced , Hyperalgesia/drug therapy , Male , Mice , Mice, Inbred C57BL , Oligonucleotides, Antisense/pharmacology , Sex Characteristics , Spider Venoms/pharmacology , Spinal Cord/metabolism
12.
Pharmaceuticals (Basel) ; 14(2)2021 Jan 29.
Article in English | MEDLINE | ID: mdl-33573015

ABSTRACT

Rheumatoid arthritis (RA) is a painful inflammatory disease of the joints which affects a considerable proportion of the world population, mostly women. If not adequately treated, RA patients can become permanently disabled. Importantly, not all the patients respond to the available anti-rheumatic therapies, which also present diverse side effects. In this context, monitoring of treatment response is pivotal to avoid unnecessary side effects and costs towards an ineffective therapy. Herein, we performed a pilot study to investigate the potential use of flow cytometry and attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy as measures to identify responders and non-responders to leflunomide, a disease-modifying drug used in the treatment of RA patients. The evaluation of peripheral blood CD62L+ polymorphonuclear cell numbers and ATR-FTIR vibrational modes in plasma were able to discriminate responders to leflunomide (LFN) three-months after therapy has started. Overall, the results indicate that both flow cytometry and ATR-FTIR can potentially be employed as additional measures to monitor early treatment response to LFN in RA patients.

13.
Toxicon ; 188: 80-88, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33038354

ABSTRACT

Opioids are the "gold standard" treatment for postoperative pain, but these drugs also have limiting adverse effects. Thus, adjuvant drugs might be useful in opioid therapy for postoperative pain. The aim of the present study was to evaluate the effect of Phα1ß, a dual blocker of Cav2 and TRPA1 channels, on antinociceptive and adverse actions of morphine in a model of postoperative pain. Phα1ß (100-300 pmol/site) or morphine (3-10 mg/kg), alone, largely reduced postoperative nociception. However, Phα1ß (100 pmol/site) or morphine (10 mg/kg) also produced motor impairment. Lower doses of Phα1ß (30 pmol/site) or morphine (1 mg/kg), that did not have an effect alone, showed antinociceptive effect when concomitantly administrated. Moreover, co-administration of Phα1ß (30 pmol/site) with morphine (1 or 10 mg/kg) was unable to cause motor impairment. Preoperative repeated treatment with morphine increased the expression of Cav2 and TRPA1 channels in spinal cord, and caused tolerance and withdrawal syndrome, which were reversed with a single injection of Phα1ß (30 pmol/site). When injected postoperatively, escalating doses of morphine worsened postoperative hyperalgesia, induced tolerance, and withdrawal syndrome. Similarly, Phα1ß (30 pmol/site) reversed these adverse effects. Single or repeated morphine caused constipation, which was not altered by Phα1ß. Thus, a low dose of Phα1ß potentiated the analgesia, and reversed some adverse effects of morphine on operated mice, indicating the potential use of this agent as an adjuvant drug in opioid therapy for postoperative pain.


Subject(s)
Analgesics, Opioid/therapeutic use , Chemotherapy, Adjuvant/methods , Pain, Postoperative/drug therapy , Spider Venoms/therapeutic use , Analgesics , Animals , Calcium Channels, N-Type/metabolism , Hyperalgesia/chemically induced , Mice , Morphine , Spider Venoms/pharmacology , TRPA1 Cation Channel/metabolism
14.
Mol Neurobiol ; 57(5): 2420-2435, 2020 May.
Article in English | MEDLINE | ID: mdl-32095993

ABSTRACT

Central neuropathic pain is a common untreated symptom in progressive multiple sclerosis (PMS) and is associated with poor quality of life and interference with patients' daily activities. The neuroinflammation process and mitochondrial dysfunction in the PMS lesions generate reactive species. The transient potential receptor ankyrin 1 (TRPA1) has been identified as one of the major mechanisms that contribute to neuropathic pain signaling and can be activated by reactive compounds. Thus, the goal of our study was to evaluate the role of spinal TRPA1 in the central neuropathic pain observed in a PMS model in mice. We used C57BL/6 female mice (20-30 g), and the PMS model was induced by the experimental autoimmune encephalomyelitis (EAE) using mouse myelin oligodendrocyte glycoprotein (MOG35-55) antigen and CFA (complete Freund's adjuvant). Mice developed progressive clinical score, with motor impairment observed after 15 days of induction. This model induced mechanical and cold allodynia and heat hyperalgesia which were measured up to 14 days after induction. The hypersensitivity observed was reduced by the administration of selective TRPA1 antagonists (HC-030031 and A-967079, via intrathecal and intragastric), antioxidants (α-lipoic acid and apocynin, via intrathecal and intragastric), and TRPA1 antisense oligonucleotide (via intrathecal). We also observed an increase in TRPA1 mRNA levels, NADPH oxidase activity, and 4-hydroxinonenal (a TRPA1 agonist) levels in spinal cord samples of PMS-EAE induced animals. In conclusion, these results support the hypothesis of the TRPA1 receptor involvement in nociception observed in a PMS-EAE model in mice.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/complications , Hyperalgesia/physiopathology , Nerve Tissue Proteins/physiology , Neuralgia/physiopathology , Nociception/physiology , Spinal Cord/physiopathology , TRPA1 Cation Channel/physiology , Acetanilides/pharmacology , Acetanilides/therapeutic use , Acetophenones/pharmacology , Analgesics/pharmacology , Analgesics/therapeutic use , Animals , Antipyrine/analogs & derivatives , Antipyrine/pharmacology , Antipyrine/therapeutic use , Dipyrone/pharmacology , Dipyrone/therapeutic use , Encephalomyelitis, Autoimmune, Experimental/physiopathology , Female , Hyperalgesia/drug therapy , Hyperalgesia/etiology , Mice , Mice, Inbred C57BL , Myelin-Oligodendrocyte Glycoprotein/immunology , Myelin-Oligodendrocyte Glycoprotein/toxicity , NADPH Oxidases/antagonists & inhibitors , Nerve Tissue Proteins/biosynthesis , Nerve Tissue Proteins/genetics , Neuralgia/drug therapy , Neuralgia/etiology , Nociception/drug effects , Oligonucleotides, Antisense/pharmacology , Oxidative Stress , Oximes/pharmacology , Oximes/therapeutic use , Peptide Fragments/immunology , Peptide Fragments/toxicity , Pregabalin/pharmacology , Pregabalin/therapeutic use , Purines/pharmacology , Purines/therapeutic use , TRPA1 Cation Channel/antagonists & inhibitors , TRPA1 Cation Channel/biosynthesis , TRPA1 Cation Channel/genetics , Thioctic Acid/pharmacology , Up-Regulation/drug effects
15.
Exp Neurol ; 328: 113241, 2020 06.
Article in English | MEDLINE | ID: mdl-32045597

ABSTRACT

Central neuropathic pain is the main symptom caused by spinal cord lesion in relapsing-remitting multiple sclerosis (RRMS), but its management is still not effective. The transient receptor potential ankyrin 1 (TRPA1) is a pain detecting ion channel involved in neuropathic pain development. Thus, the aim of our study was to evaluate the role of TRPA1 in central neuropathic nociception induced by relapsing-remitting experimental autoimmune encephalomyelitis (RR-EAE) mouse model. In this model, we observed the development of similar clinical conditions of RRMS in C57BL/6 female mice through RR-EAE using MOG35-55 antigen and Quil A adjuvant. At the thirty-fifth day post-induction, C57BL/6 female mice demonstrated alteration in the RR-EAE score without motor impairment, mechanical and cold allodynia. Also, significative changes in demyelinating (Mog and olig-1) and neuroinflammatory (Iba1, Gfap and Tnfa) markers were observed, but this model did not alter Trpa1 RNA expression levels in the spinal cord. The hydrogen peroxide and 4-hydroxynonenal levels (TRPA1 agonists) were increased in RR-EAE induced mice, as well as the NADPH oxidase activity. The intragastric treatment of RR-EAE induced mice with TRPA1 antagonists (HC-030031 and A-967079) and antioxidant (α-lipoic acid and apocynin) caused an antiallodynic effect. Moreover, the intrathecal administration of TRPA1 antisense oligonucleotide, HC-030031, α-lipoic acid, and apocynin transiently attenuated mechanical and cold allodynia. Thus, TRPA1 plays a key role in the induction of neuropathic pain in this model of RR-EAE and can be a possible target for investigating the development of pain in RRMS patients.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/metabolism , Hyperalgesia/metabolism , Neuralgia/metabolism , Nociception/physiology , TRPA1 Cation Channel/metabolism , Animals , Encephalomyelitis, Autoimmune, Experimental/complications , Female , Hyperalgesia/etiology , Mice , Mice, Inbred C57BL , Neuralgia/etiology
16.
Pharmacol Res ; 152: 104576, 2020 02.
Article in English | MEDLINE | ID: mdl-31790822

ABSTRACT

Breast carcinoma causes severe pain, which decreases the quality of life of patients. Current treatments produce adverse effects and have limited efficacy. Transient potential receptor ankyrin 1 (TRPA1) is related to the onset of cancer and neuropathic pain. The aim of this study was to evaluate the involvement of TRPA1 in a model of breast carcinoma. We injected 4T1 cells in the fourth caudal mammary fat pad of female BALB/c mice, and after 20 days we observed mechanical and cold allodynia and spontaneous nociception behavior (mouse grimace scale detection, MGS). TRPA1 selective antagonist (HC-030031 or A-967079) administration or intrathecal administration of TRPA1 antisense (AS) oligonucleotide was performed. The activity of NADPH oxidase, superoxide dismutase (SOD) and hydrogen peroxide (H2O2) levels were evaluated. The chemical hyperalgesia produced by a TRPA1 agonist (allyl isothiocyanate, AITC) was also detected. The administration of TRPA1 antagonists, TRPA1 AS, or antioxidant, transiently attenuated MGS, or mechanical and cold allodynia. Intraplantar injection of AITC also caused nociception. NADPH oxidase or SOD activity and H2O2 levels were increased in the sciatic nerve and hind paw skin samples. The 4T1 cells did not express TRPA1, and the use of HC-030031 or α-lipoic acid did not reduce the cytotoxic effect of a chemotherapeutic drug (paclitaxel). Thus, TRPA1 could be investigated as a target for breast carcinoma pain treatment.


Subject(s)
Cancer Pain , Mammary Neoplasms, Experimental , TRPA1 Cation Channel , Acetanilides/pharmacology , Acetanilides/therapeutic use , Analgesics/therapeutic use , Animals , Antineoplastic Agents, Phytogenic/pharmacology , Cancer Pain/drug therapy , Cancer Pain/etiology , Cancer Pain/genetics , Cancer Pain/metabolism , Cell Line, Tumor , Female , Hydrogen Peroxide/metabolism , Hyperalgesia/drug therapy , Mammary Neoplasms, Experimental/complications , Mammary Neoplasms, Experimental/drug therapy , Mammary Neoplasms, Experimental/genetics , Mammary Neoplasms, Experimental/metabolism , Mice, Inbred BALB C , NADPH Oxidases/metabolism , Nociception/drug effects , Oximes/therapeutic use , Paclitaxel/pharmacology , Purines/pharmacology , Purines/therapeutic use , Sciatic Nerve/drug effects , Sciatic Nerve/metabolism , Skin/metabolism , Superoxide Dismutase/metabolism , TRPA1 Cation Channel/antagonists & inhibitors , TRPA1 Cation Channel/genetics , Thioctic Acid/therapeutic use
17.
Inflammation ; 40(5): 1553-1565, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28567497

ABSTRACT

Pneumonia-induced sepsis is responsible for about 50% of cases in the world. Patients who develop severe sepsis and septic shock present organ dysfunction and elevated plasma cytokine levels, which may lead to death. Clinical scores are important to evaluate the framework of septic patients and are used to predict the syndrome progress, prognostics, and mortality. The objective of the present study was to verify the applicability of a murine clinical score system to experimental sepsis (pneumonia-induced sepsis in male mice) and to correlate it with mortality and bacterial dissemination in different organs. Results demonstrated that animals which present higher clinical scores (>3) are more likely to die. Animals presenting high clinical scores exhibited transient bacteremia and displayed bacterial spreading to different organs such as heart, kidney, liver, and brain. There is a correlation between clinical score and bacterial dissemination and consequently greater risk of death. In addition, animals which showed bacterial dissemination in more than three organs and high clinical scores presented high levels of cytokines (TNF-α, MCP-1, IL-6, and IL-10) in plasma, lung, heart, liver, kidney, and brain. Therefore, our study suggests that (1) severity scores have predictive power in experimental models of sepsis and (2) high concentrations of tissue cytokines may contribute to localized inflammation and be one of the factors responsible for the systemic inflammatory syndrome of sepsis.


Subject(s)
Inflammation/microbiology , Sepsis/diagnosis , Severity of Illness Index , Animals , Bacterial Load , Cytokines/analysis , Male , Mice , Multiple Organ Failure/microbiology , Prognosis , Sepsis/mortality , Sepsis/pathology , Sepsis/transmission
18.
PLoS Negl Trop Dis ; 8(9): e3176, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25233456

ABSTRACT

BACKGROUND: Trypanosoma rangeli is a hemoflagellate protozoan parasite infecting humans and other wild and domestic mammals across Central and South America. It does not cause human disease, but it can be mistaken for the etiologic agent of Chagas disease, Trypanosoma cruzi. We have sequenced the T. rangeli genome to provide new tools for elucidating the distinct and intriguing biology of this species and the key pathways related to interaction with its arthropod and mammalian hosts. METHODOLOGY/PRINCIPAL FINDINGS: The T. rangeli haploid genome is ∼ 24 Mb in length, and is the smallest and least repetitive trypanosomatid genome sequenced thus far. This parasite genome has shorter subtelomeric sequences compared to those of T. cruzi and T. brucei; displays intraspecific karyotype variability and lacks minichromosomes. Of the predicted 7,613 protein coding sequences, functional annotations could be determined for 2,415, while 5,043 are hypothetical proteins, some with evidence of protein expression. 7,101 genes (93%) are shared with other trypanosomatids that infect humans. An ortholog of the dcl2 gene involved in the T. brucei RNAi pathway was found in T. rangeli, but the RNAi machinery is non-functional since the other genes in this pathway are pseudogenized. T. rangeli is highly susceptible to oxidative stress, a phenotype that may be explained by a smaller number of anti-oxidant defense enzymes and heat-shock proteins. CONCLUSIONS/SIGNIFICANCE: Phylogenetic comparison of nuclear and mitochondrial genes indicates that T. rangeli and T. cruzi are equidistant from T. brucei. In addition to revealing new aspects of trypanosome co-evolution within the vertebrate and invertebrate hosts, comparative genomic analysis with pathogenic trypanosomatids provides valuable new information that can be further explored with the aim of developing better diagnostic tools and/or therapeutic targets.


Subject(s)
Genome, Protozoan , Phylogeny , Trypanosoma rangeli/genetics , Animals , Base Sequence , DNA, Protozoan/genetics , Haploidy , Humans
19.
Parasit Vectors ; 6: 363, 2013 Dec 23.
Article in English | MEDLINE | ID: mdl-24360167

ABSTRACT

BACKGROUND: The parasites Trypanosoma rangeli and Trypanosoma cruzi share vectors and hosts over a wide geographical area in Latin America. In this study, we propose a single molecular approach for simultaneous detection and typing of T. rangeli and T. cruzi. METHODS: A restriction fragment length polymorphism analysis of the mitochondrial cytochrome oxidase II gene (COII-RFLP) using enzyme AluI and different amounts of DNA from the major genetic groups of T. rangeli and T. cruzi (KP1+/KP1- and DTU-I/DTU-II) was carried out. The same marker was tested on the other T. cruzi DTUs (DTU-III to DTU-VI) and on DNA extracted from gut contents of experimentally infected triatomines. RESULTS: The COII PCR generates a ~400 bp fragment, which after digestion with AluI (COII-RFLP) can be used to distinguish T. rangeli from T. cruzi and simultaneously differentiate the major genetic groups of T. rangeli (KP1+ and KP1-) and T. cruzi (DTU-I and DTU-II). The COII-RFLP generated bands of ~120 bp and ~280 bp for KP1+, whereas for KP1- no amplicon cleavage was observed. For T. cruzi, digestion of COII revealed a ~300 bp band for DTU-I and a ~250 bp band for DTU-II. For DTU-III to DTU-VI, COII-RFLP generated bands ranging from ~310 to ~330 bp, but the differentiation of these DTUs was not as clear as the separation between DTU-I and DTU-II. After AluI digestion, a species-specific fragment of ~80 bp was observed for all DTUs of T. cruzi. No cross-amplification was observed for Leishmania spp., T. vivax or T. evansi. CONCLUSIONS: The COII-RFLP allowed simultaneous detection and typing of T. rangeli and T. cruzi strains according to their major genetic groups (KP1+/KP1- and DTU-I/DTU-II) in vitro and in vivo, providing a reliable and sensitive tool for epidemiological studies in areas where T. rangeli and T. cruzi coexist.


Subject(s)
Electron Transport Complex IV/metabolism , Trypanosoma cruzi/enzymology , Trypanosoma cruzi/isolation & purification , Trypanosoma rangeli/enzymology , Trypanosoma rangeli/isolation & purification , Base Sequence , DNA, Protozoan/genetics , Electron Transport Complex IV/genetics , Gene Expression Regulation, Enzymologic , Genomics , Molecular Sequence Data , Polymorphism, Restriction Fragment Length , Species Specificity , Trypanosoma cruzi/genetics , Trypanosoma rangeli/genetics
20.
J Proteomics ; 82: 52-63, 2013 Apr 26.
Article in English | MEDLINE | ID: mdl-23466310

ABSTRACT

Sympatric distribution and sharing of hosts and antigens by Trypanosoma rangeli and Trypanosoma cruzi, the etiological agent of Chagas' disease, often incur in misdiagnosis and improper epidemiological inferences. Many secreted and surface proteins (SP) have been described as important antigens shared by these species. This work describes the T. rangeli surfaceome obtained by gel-free (LC-ESI-MS/MS) and gel-based (GeLC-ESI-MS/MS) proteomic approaches, and immunoblotting analyses and the comparison of these SP with T. cruzi. A total of 138 T. rangeli proteins and 343 T. cruzi proteins were obtained, among which, 42 and 157 proteins were exclusively identified in T. rangeli or T. cruzi trypomastigotes, respectively. Immunoblotting assays using sera from experimentally infected mice revealed a distinct band pattern for each species. MS/MS analysis of T. rangeli exclusive bands revealed two unique GP63-related proteins and flagellar calcium-binding protein. Also, a ~32kDa band composed of 12 distinct proteins was exclusively recognized by anti-T. cruzi serum. This highly sensitive proteomic assessment of surface proteins characterized the T. rangeli surfaceome, revealing several differences and similarities between these two parasites. The study reports new T. rangeli-specific proteins with promising use in differential diagnosis from T. cruzi. BIOLOGICAL SIGNIFICANCE: In this manuscript, we report the first proteomic analysis of the T. rangeli surface (surfaceome), a non-pathogenic parasite occurring in sympatry with T. cruzi, the etiological agent of Chagas disease. This comparative proteomic analysis was performed using high-throughput in-gel and gel-free proteomic approaches combined with immunoblotting, allowing us to identify new T. rangeli-specific proteins with promising use in differential serodiagnosis, among several other protein not previously reported for this taxon. Additionally, cross-recognition assays showed that T. cruzi surface proteins were recognized by heterologous serum (anti-T. rangeli) that strengthens the possibility of misdiagnosis of Chagas disease in humans and other mammals. Thus, this work provides new insights to understand the serological cross-reactivity between T. cruzi and T. rangeli, as well as, the identification of targets for specific T. rangeli diagnosis as revealed by the comparative surfaceome analysis. We strongly believe that this research is of importance to the readers of Journal of Proteomics since it provides new potential markers for diagnosis of both T. cruzi and T. rangeli parasites increasing the spectrum of specific targets for unambiguous diagnosis of T. rangeli and T. cruzi infections, besides describing new approaches to assess the trypanosomatids proteome.


Subject(s)
Proteomics , Protozoan Proteins/metabolism , Trypanosoma rangeli/metabolism , Trypanosomiasis/metabolism , Animals , Humans , Mice , Serologic Tests/methods , Trypanosomiasis/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL
...