Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Thromb Haemost ; 8(6): 1333-9, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20345708

ABSTRACT

BACKGROUND: The principal inhibitor of fibrinolysis in vivo is plasminogen activator inhibitor-1 (PAI-1). PAI-749 is a small molecule inhibitor of PAI-1 with proven antithrombotic efficacy in several preclinical models. OBJECTIVE: To assess the effect of PAI-749, by using an established ex vivo clinical model of thrombosis and a range of complementary in vitro human plasma-based and whole blood-based models of fibrinolysis. METHODS: In a double-blind, randomized, crossover study, ex vivo thrombus formation was assessed using the Badimon chamber in 12 healthy volunteers during extracorporeal administration of tissue-type plasminogen activator (t-PA) in the presence of PAI-749 or control. t-PA-mediated lysis of plasma clots and of whole blood model thrombi were assessed in vitro. The role of vitronectin was examined by assessing lysis of fibrin clots generated from purified plasma proteins. RESULTS: There was a dose-dependent reduction in ex vivo thrombus formation by t-PA (P < 0.0001). PAI-749 had no effect on in vitro or ex vivo thrombus formation or fibrinolysis in the presence or absence of t-PA. Inhibition of PAI-1 with a blocking antibody enhanced fibrinolysis in vitro (P < 0.05). CONCLUSIONS: Despite its efficacy in a purified human system and in preclinical models of thrombosis, the current study suggests that PAI-749 does not affect thrombus formation or fibrinolysis in a range of established human plasma and whole blood-based systems.


Subject(s)
Fibrinolysis/drug effects , Indoles/pharmacology , Plasminogen Activator Inhibitor 1 , Tetrazoles/pharmacology , Adult , Cross-Over Studies , Double-Blind Method , Humans , Models, Biological
2.
J Thromb Haemost ; 7(11): 1915-9, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19691482

ABSTRACT

BACKGROUND: Interaction of P-selectin with its glycoprotein ligand (P-selectin glycoprotein ligand type 1) mediates inflammatory processes that may also include vascular thrombosis. Platelet P-selectin expression is increased in patients with coronary heart disease, and its antagonism represents a potential future therapeutic target for the prevention and treatment of atherothrombosis. AIM: To investigate the effects of the novel small molecule P-selectin antagonist PSI-697 on thrombus formation in humans. METHODS AND RESULTS: In a double-blind randomized crossover study, thrombus formation was measured in 12 healthy volunteers, using the Badimon ex vivo perfusion chamber under conditions of low and high shear stress. Saline placebo, low-dose (2 m) and high-dose (20 m) PSI-697 and the glycoprotein IIb-IIIa receptor antagonist tirofiban (50 ng mL(-1)) were administered into the extracorporeal circuit prior to the perfusion chamber. As compared with saline placebo, blockade of platelet glycoprotein IIb-IIIa receptor with tirofiban produced 28% and 56% reductions in thrombus formation in the low-shear and high-shear chambers, respectively. PSI-697 caused a dose-dependent, but more modest, reduction in thrombus formation. Low-dose PSI-796 (2 m) reduced total thrombus area by 14% (P = 0.04) and 30% (P = 0.0002) in the low-shear and high-shear chambers, respectively. At the high dose (20 m), PSI-697 reduced total thrombus area by 18% (P = 0.0094) and 41% (P = 0.0008) in the low-shear and high-shear chambers, respectively. CONCLUSIONS: P-selectin antagonism with PSI-697 reduces ex vivo thrombus formation in humans. These findings provide further evidence that P-selectin antagonism may be a potential target for the prevention and treatment of cardiovascular disease.


Subject(s)
P-Selectin/antagonists & inhibitors , Thrombosis/prevention & control , Adolescent , Adult , Blood/drug effects , Cells, Cultured , Cross-Over Studies , Double-Blind Method , Humans , Hydroxyquinolines/pharmacology , Perfusion , Platelet Glycoprotein GPIIb-IIIa Complex/antagonists & inhibitors , Thrombosis/drug therapy , Tirofiban , Tyrosine/analogs & derivatives , Tyrosine/pharmacology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...