Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Virol ; 94(14)2020 07 01.
Article in English | MEDLINE | ID: mdl-32350075

ABSTRACT

Viruses from the family Hantaviridae are encountered as emerging pathogens causing two life-threatening human zoonoses: hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS), with case fatality rates of up to 50%. Here, we comprehensively investigated entry of the Old World hantavirus Puumala virus (PUUV) into mammalian cells, showing that upon treatment with pharmacological inhibitors of macropinocytosis and clathrin-mediated endocytosis, PUUV infections are greatly reduced. We demonstrate that the inhibitors did not interfere with viral replication and that RNA interference, targeting cellular mediators of macropinocytosis, decreases PUUV infection levels significantly. Moreover, we established lipophilic tracer staining of PUUV particles and show colocalization of stained virions and markers of macropinosomes. Finally, we report a significant increase in the fluid-phase uptake of cells infected with PUUV, indicative of a virus-triggered promotion of macropinocytosis.IMPORTANCE The family Hantaviridae comprises a diverse group of virus species and is considered an emerging global public health threat. Individual hantavirus species differ considerably in terms of their pathogenicity but also in their cell biology and host-pathogen interactions. In this study, we focused on the most prevalent pathogenic hantavirus in Europe, Puumala virus (PUUV), and investigated the entry and internalization of PUUV into mammalian cells. We show that both clathrin-mediated endocytosis and macropinocytosis are cellular pathways exploited by the virus to establish productive infections and demonstrate that pharmacological inhibition of macropinocytosis or a targeted knockdown using RNA interference significantly reduced viral infections. We also found indications of an increase of macropinocytic uptake upon PUUV infection, suggesting that the virus triggers specific cellular mechanisms in order to stimulate its own internalization, thus facilitating infection.


Subject(s)
Clathrin/metabolism , Hemorrhagic Fever with Renal Syndrome/metabolism , Pinocytosis , Puumala virus/metabolism , Virus Internalization , Animals , Chlorocebus aethiops , Hemorrhagic Fever with Renal Syndrome/pathology , Vero Cells
2.
PLoS Pathog ; 15(3): e1007601, 2019 03.
Article in English | MEDLINE | ID: mdl-30883607

ABSTRACT

Influenza viruses (IVs) tend to rapidly develop resistance to virus-directed vaccines and common antivirals targeting pathogen determinants, but novel host-directed approaches might preclude resistance development. To identify the most promising cellular targets for a host-directed approach against influenza, we performed a comparative small interfering RNA (siRNA) loss-of-function screen of IV replication in A549 cells. Analysis of four different IV strains including a highly pathogenic avian H5N1 strain, an influenza B virus (IBV) and two human influenza A viruses (IAVs) revealed 133 genes required by all four IV strains. According to gene enrichment analyses, these strain-independent host genes were particularly enriched for nucleocytoplasmic trafficking. In addition, 360 strain-specific genes were identified with distinct patterns of usage for IAVs versus IBV and human versus avian IVs. The strain-independent host genes served to define 43 experimental and otherwise clinically approved drugs, targeting reportedly fourteen of the encoded host factors. Amongst the approved drugs, the urea-based kinase inhibitors (UBKIs) regorafenib and sorafenib exhibited a superior therapeutic window of high IV antiviral activity and low cytotoxicity. Both UBKIs appeared to block a cell signaling pathway involved in IV replication after internalization, yet prior to vRNP uncoating. Interestingly, both compounds were active also against unrelated viruses including cowpox virus (CPXV), hantavirus (HTV), herpes simplex virus 1 (HSV1) and vesicular stomatitis virus (VSV) and showed antiviral efficacy in human primary respiratory cells. An in vitro resistance development analysis for regorafenib failed to detect IV resistance development against this drug. Taken together, the otherwise clinically approved UBKIs regorafenib and sorafenib possess high and broad-spectrum antiviral activity along with substantial robustness against resistance development and thus constitute attractive host-directed drug candidates against a range of viral infections including influenza.


Subject(s)
Orthomyxoviridae/genetics , Orthomyxoviridae/immunology , Virus Replication/physiology , A549 Cells , Active Transport, Cell Nucleus/physiology , Antiviral Agents , Host-Pathogen Interactions , Humans , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/immunology , Influenza A virus/genetics , Influenza A virus/immunology , Influenza B virus/genetics , Influenza B virus/immunology , Influenza, Human , Orthomyxoviridae/pathogenicity , Phenylurea Compounds/pharmacology , Protein Kinase Inhibitors/metabolism , Pyridines/pharmacology , RNA Interference/immunology , RNA Viruses , RNA, Small Interfering/genetics , RNA, Small Interfering/immunology , Sorafenib/pharmacology , Urea/metabolism
3.
Sci Rep ; 8(1): 10634, 2018 Jul 13.
Article in English | MEDLINE | ID: mdl-30006597

ABSTRACT

Fluorescence fluctuation spectroscopy has become a popular toolbox for non-disruptive analysis of molecular interactions in living cells. The quantification of protein oligomerization in the native cellular environment is highly relevant for a detailed understanding of complex biological processes. An important parameter in this context is the molecular brightness, which serves as a direct measure of oligomerization and can be easily extracted from temporal or spatial fluorescence fluctuations. However, fluorescent proteins (FPs) typically used in such studies suffer from complex photophysical transitions and limited maturation, inducing non-fluorescent states. Here, we show how these processes strongly affect molecular brightness measurements. We perform a systematic characterization of non-fluorescent states for commonly used FPs and provide a simple guideline for accurate, unbiased oligomerization measurements in living cells. Further, we focus on novel red FPs and demonstrate that mCherry2, an mCherry variant, possesses superior properties with regards to precise quantification of oligomerization.


Subject(s)
Intravital Microscopy/methods , Luminescent Proteins/chemistry , Molecular Probes/chemistry , Protein Multimerization , Single Molecule Imaging/methods , Animals , CHO Cells , Cell Line, Tumor , Cricetulus , Fluorescence , HEK293 Cells , Humans , Luminescent Proteins/metabolism , Microscopy, Confocal/methods , Microscopy, Fluorescence/methods , Spectrometry, Fluorescence/methods , Red Fluorescent Protein
4.
Biochim Biophys Acta ; 1858(11): 2871-2881, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27581086

ABSTRACT

Sorafenib and regorafenib are small-molecule kinase inhibitors approved for the treatment of locally recurrent or metastatic, progressive, differentiated thyroid carcinoma, renal cell carcinoma, and hepatocellular carcinoma (sorafenib) and of colorectal cancer (regorafenib). As of now, the mechanisms, which are responsible for their antitumor activities, are not completely understood. Given the lipophilic nature of the molecules, it can be hypothesized that the pharmacological impact is mediated by the interaction with cellular membranes as it is true for many pharmacologically active molecules. However, an interaction of sorafenib or regorafenib with lipid membranes has not yet been investigated in detail. Here, we characterized the interaction of both drugs with lipid membranes by applying a variety of biophysical approaches including nuclear magnetic resonance, electron spin resonance, and fluorescence spectroscopy. We found that sorafenib and regorafenib bind to lipid membranes by inserting into the lipid-water interface of the bilayer. This membrane embedding causes a disturbance of bilayer structure leading to an increased permeability of the membrane for polar molecules. One approach shows that the extent of the effects depends on the membrane lipid composition underlining a particular role of phosphatidylcholine and cholesterol. Our data for the first time characterize the impact of sorafenib and regorafenib on the lipid membrane structure and dynamics, which may contribute to a better understanding of their effectiveness in the treatment of malignancies as well as of their side effects.


Subject(s)
Antineoplastic Agents/chemistry , Cholesterol/chemistry , Niacinamide/analogs & derivatives , Phenylurea Compounds/chemistry , Phosphatidylcholines/chemistry , Phosphatidylethanolamines/chemistry , Pyridines/chemistry , Unilamellar Liposomes/chemistry , Antineoplastic Agents/pharmacology , Ascorbic Acid/chemistry , Cell Membrane/chemistry , Cell Membrane/drug effects , Cell Membrane Permeability , Dithionite/chemistry , Kinetics , Niacinamide/chemistry , Niacinamide/pharmacology , Oxidation-Reduction , Phenylurea Compounds/pharmacology , Pyridines/pharmacology , Sorafenib , Spin Labels , Staining and Labeling/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...