Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Mech Behav Biomed Mater ; 144: 105939, 2023 08.
Article in English | MEDLINE | ID: mdl-37348169

ABSTRACT

We propose a computational framework to study the effect of corrosion on the mechanical strength of magnesium (Mg) samples. Our work is motivated by the need to predict the residual strength of biomedical Mg implants after a given period of degradation in a physiological environment. To model corrosion, a mass-diffusion type model is used that accounts for localised corrosion using Weibull statistics. The overall mass loss is prescribed (e.g., based on experimental data). The mechanical behaviour of the Mg samples is modeled by a state-of-the-art Cazacu-Plunkett-Barlat plasticity model with a coupled damage model. This allowed us to study how Mg degradation in immersed samples reduces the mechanical strength over time. We performed a large number of in vitro corrosion experiments and mechanical tests to validate our computational framework. Our framework could predict both the experimentally observed loss of mechanical strength and the ductility due to corrosion for both tension and compression tests.


Subject(s)
Gadolinium , Magnesium , Materials Testing , Corrosion , Prostheses and Implants , Alloys , Absorbable Implants
2.
Biomater Sci ; 10(6): 1532-1543, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35171193

ABSTRACT

Rodent models are commonly used in pre-clinical research of magnesium (Mg)-based and other types of biomaterials for fracture treatment. Most studies selected unstable fixation methods, and there is a lack of multimodal longitudinal in vivo monitoring of bone healing. The purpose of this study is to develop a rat femoral fracture model stabilized by external fixation with intra-medullary Mg implant, and to investigate the dynamic bone union process with several imaging techniques offering complementing insights into the process. Pure Mg pins were prepared, followed by an in vitro degradation test. Male Sprague-Dawley rats in the experimental group underwent femoral osteotomy stabilized by external fixators with intra-medullary implantation of Mg pins, and the control group underwent external fixation without intra-medullary implants. Post-operative radiograph, micro-CT and B-mode ultrasonography were acquired directly after surgery, and re-examined at week 4, 8 and 12. Bone tissue volume, in vivo implant degradation, histological staining and MRI images were analyzed using ex vivo samples. Both groups achieved fracture union at week 12, and the dynamic healing process was illustrated by in vivo radiograph, micro-CT and ultrasonography. Bilateral whole femur ex vivo analysis further demonstrated increased ratio of bone tissue volume in the surgical femur with Mg implants, and in vivo degradation of Mg pins was slower than in vitro results. Titanium screws rather than intra-medullary Mg pins were the source of artifact in MRI. This pilot study showed the rat fracture model with external fixation and intra-medullary Mg implantation to be an effective method for dynamic in vivo monitoring of the bone healing process. Future application of the animal model may facilitate pre-clinical translational research of biodegradable orthopaedic implant materials for fracture treatment.


Subject(s)
Fracture Healing , Magnesium , Animals , Bone Screws , External Fixators , Fracture Fixation/methods , Fracture Healing/physiology , Longitudinal Studies , Male , Pilot Projects , Rats , Rats, Sprague-Dawley
3.
Materials (Basel) ; 10(1)2017 Jan 11.
Article in English | MEDLINE | ID: mdl-28772414

ABSTRACT

Magnesium alloys are promising candidates for biodegradable medical implants which reduce the necessity of second surgery to remove the implants. Yttrium in solid solution is an attractive alloying element because it improves mechanical properties and exhibits suitable corrosion properties. Silver was shown to have an antibacterial effect and can also enhance the mechanical properties of magnesium alloys. Measurements of microhardness and electrical resistivity were used to study the response of Mg-4Y and Mg-4Y-1Ag alloys to isochronal or isothermal heat treatments. Hardening response and electrical resistivity annealing curves in these alloys were compared in order to investigate the effect of silver addition. Procedures for solid solution annealing and artificial aging of the Mg-4Y-1Ag alloy were developed. The corrosion rate of the as-cast and heat-treated Mg-4Y-1Ag alloy was measured by the mass loss method. It was found out that solid solution heat treatment, as well artificial aging to peak hardness, lead to substantial improvement in the corrosion properties of the Mg-4Y-1Ag alloy.

SELECTION OF CITATIONS
SEARCH DETAIL
...