Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 7(1): 13620, 2017 10 19.
Article in English | MEDLINE | ID: mdl-29051573

ABSTRACT

Magnetic skyrmions are topologically protected spin textures with great technological potential. These topologically non-trivial non-coplanar spin textures give rise to a topological Hall effect, enabling the purely electronic detection of magnetic skyrmions. We report a clear topological Hall effect in thin films of the the Heusler alloy Mn2CoAl, a ferromagnetic spin-gapless semiconductor, capped by a thin layer of Pd. We exploit the strong thickness- and temperature-dependence of the anomalous Hall effect in this system, tuning it to zero to enable the unambiguous measurement of the topological Hall effect, which is observed for temperatures between 3 K and 280 K. The topological Hall effect is evidence of skyrmions, and we demonstrate the simultaneous coexistence of opposite polarity skyrmions using a novel method involving minor field loops of the Hall effect.

2.
Proc Natl Acad Sci U S A ; 112(38): 11795-9, 2015 Sep 22.
Article in English | MEDLINE | ID: mdl-26351697

ABSTRACT

Monolayer graphene exhibits many spectacular electronic properties, with superconductivity being arguably the most notable exception. It was theoretically proposed that superconductivity might be induced by enhancing the electron-phonon coupling through the decoration of graphene with an alkali adatom superlattice [Profeta G, Calandra M, Mauri F (2012) Nat Phys 8(2):131-134]. Although experiments have shown an adatom-induced enhancement of the electron-phonon coupling, superconductivity has never been observed. Using angle-resolved photoemission spectroscopy (ARPES), we show that lithium deposited on graphene at low temperature strongly modifies the phonon density of states, leading to an enhancement of the electron-phonon coupling of up to λ ≃ 0.58. On part of the graphene-derived π*-band Fermi surface, we then observe the opening of a Δ ≃ 0.9-meV temperature-dependent pairing gap. This result suggests for the first time, to our knowledge, that Li-decorated monolayer graphene is indeed superconducting, with Tc ≃ 5.9 K.

3.
Nano Lett ; 15(5): 2825-9, 2015 May 13.
Article in English | MEDLINE | ID: mdl-25822076

ABSTRACT

Tuning the electronic properties of graphene by adatom deposition unavoidably introduces disorder into the system, which directly affects the single-particle excitations and electrodynamics. Using angle-resolved photoemission spectroscopy (ARPES) we trace the evolution of disorder in graphene by thallium adatom deposition and probe its effect on the electronic structure. We show that the signatures of quasiparticle scattering in the photoemission spectral function can be used to identify thallium adatoms, although charged, as efficient short-range scattering centers. Employing a self-energy model for short-range scattering, we are able to extract a δ-like scattering potential δ = -3.2 ± 1 eV. Therefore, isolated charged scattering centers do not necessarily act just as good long-range (Coulomb) scatterers but can also act as efficient short-range (δ-like) scatterers; in the case of thallium, this happens with almost equal contributions from both mechanisms.

4.
Phys Rev Lett ; 112(12): 127002, 2014 Mar 28.
Article in English | MEDLINE | ID: mdl-24724673

ABSTRACT

Spin-orbit coupling has been conjectured to play a key role in the low-energy electronic structure of Sr2RuO4. By using circularly polarized light combined with spin- and angle-resolved photoemission spectroscopy, we directly measure the value of the effective spin-orbit coupling to be 130±30 meV. This is even larger than theoretically predicted and comparable to the energy splitting of the dxy and dxz,yz orbitals around the Fermi surface, resulting in a strongly momentum-dependent entanglement of spin and orbital character in the electronic wavefunction. As demonstrated by the spin expectation value ⟨sk⃗·s-k⃗⟩ calculated for a pair of electrons with zero total momentum, the classification of the Cooper pairs in terms of pure singlets or triplets fundamentally breaks down, necessitating a description of the unconventional superconducting state of Sr2RuO4 in terms of these newly found spin-orbital entangled eigenstates.

5.
Nat Commun ; 4: 1977, 2013.
Article in English | MEDLINE | ID: mdl-23817313

ABSTRACT

Neutron and X-ray scattering experiments have provided mounting evidence for spin and charge ordering phenomena in underdoped cuprates. These range from early work on stripe correlations in Nd-LSCO to the latest discovery of charge-density-waves in YBa2Cu3O(6+x). Both phenomena are characterized by a pronounced dependence on doping, temperature and an externally applied magnetic field. Here, we show that these electron-lattice instabilities exhibit also a previously unrecognized bulk-surface dichotomy. Surface-sensitive electronic and structural probes uncover a temperature-dependent evolution of the CuO2 plane band dispersion and apparent Fermi pockets in underdoped Bi2 Sr(2-x) La(x) CuO(6+δ) (Bi2201), which is directly associated with an hitherto-undetected strong temperature dependence of the incommensurate superstructure periodicity below 130 K. In stark contrast, the structural modulation revealed by bulk-sensitive probes is temperature-independent. These findings point to a surface-enhanced incipient charge-density-wave instability, driven by Fermi surface nesting. This discovery is of critical importance in the interpretation of single-particle spectroscopy data, and establishes the surface of cuprates and other complex oxides as a rich playground for the study of electronically soft phases.

6.
Phys Rev Lett ; 110(9): 097004, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23496740

ABSTRACT

We revisit the normal-state electronic structure of Sr(2)RuO(4) by angle-resolved photoemission spectroscopy with improved data quality, as well as ab initio band structure calculations in the local-density approximation with the inclusion of spin-orbit coupling. We find that the current model of a single surface layer (√2×√2)R45° reconstruction does not explain all detected features. The observed depth-dependent signal degradation, together with the close quantitative agreement with the slab calculations based on the surface crystal structure as determined by low-energy electron diffraction, reveal that-at a minimum-the subsurface layer also undergoes a similar although weaker reconstruction. This model accounts for all features-a key step in understanding the electronic structure-and indicates a surface-to-bulk progression of the electronic states driven by structural instabilities. Finally, we find no evidence for other phases stemming from either topological bulk properties or, alternatively, the interplay between spin-orbit coupling and the broken symmetry of the surface.

7.
Phys Rev Lett ; 109(26): 266406, 2012 Dec 28.
Article in English | MEDLINE | ID: mdl-23368593

ABSTRACT

We study Na2IrO3 by angle-resolved photoemission spectroscopy, optics, and band structure calculations in the local-density approximation (LDA). The weak dispersion of the Ir 5d-t(2g) manifold highlights the importance of structural distortions and spin-orbit (SO) coupling in driving the system closer to a Mott transition. We detect an insulating gap Δ(gap)≃340 meV which, at variance with a Slater-type description, is already open at 300 K and does not show significant temperature dependence even across T(N)≃15 K. An LDA analysis with the inclusion of SO and Coulomb repulsion U reveals that, while the prodromes of an underlying insulating state are already found in LDA+SO, the correct gap magnitude can only be reproduced by LDA+SO+U, with U=3 eV. This establishes Na2IrO3 as a novel type of Mott-like correlated insulator in which Coulomb and relativistic effects have to be treated on an equal footing.

8.
Phys Rev Lett ; 107(18): 186405, 2011 Oct 28.
Article in English | MEDLINE | ID: mdl-22107654

ABSTRACT

The electronic structure of Bi(2)Se(3) is studied by angle-resolved photoemission and density functional theory. We show that the instability of the surface electronic properties, observed even in ultrahigh-vacuum conditions, can be overcome via in situ potassium deposition. In addition to accurately setting the carrier concentration, new Rashba-like spin-polarized states are induced, with a tunable, reversible, and highly stable spin splitting. Ab initio slab calculations reveal that these Rashba states are derived from 5-quintuple-layer quantum-well states. While the K-induced potential gradient enhances the spin splitting, this may be present on pristine surfaces due to the symmetry breaking of the vacuum-solid interface.

SELECTION OF CITATIONS
SEARCH DETAIL
...