Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neurology ; 71(21): 1676-82, 2008 Nov 18.
Article in English | MEDLINE | ID: mdl-18448871

ABSTRACT

OBJECTIVE: To determine if diffusion tensor imaging (DTI) metrics of the pyramidal tracts correlate with motor outcome in infants presenting with motor dysfunction. METHODS: DTI tractography of the pyramidal tracts was performed in 21 patients with clinical motor dysfunction who were less than 30 months of age and in 22 age-matched controls. We plotted tract-specific DTI metrics (fractional anisotropy, parallel diffusivity, transverse diffusivity, and mean diffusivity) against age for the controls and generated normative curves. For each patient, we calculated the deviation from the normative curves. Patients returned for a neurodevelopmental evaluation when they were over 36 months of age, and motor outcome measures were performed. We analyzed the association between normative deviation in DTI metrics and motor outcome measures using linear and logistic regression models. RESULTS: Normative deviation in fractional anisotropy and transverse diffusivity were significantly correlated with all measures of motor outcome. Lower fractional anisotropy and higher transverse diffusivity compared to controls were associated with worse motor outcome. Furthermore, children who were eventually diagnosed with permanent motor dysfunction had lower fractional anisotropy and higher transverse diffusivity compared with those whose motor dysfunction normalized. CONCLUSIONS: Diffusion tensor imaging metrics correlate with motor outcome in infants presenting with motor dysfunction. The identification of a quantitative imaging marker that can be applied to infants at the time of clinical presentation has implications for the evaluation of early motor dysfunction.


Subject(s)
Diffusion Magnetic Resonance Imaging/methods , Movement Disorders/diagnosis , Pyramidal Tracts/pathology , Adolescent , Adult , Child , Child, Preschool , Female , Follow-Up Studies , Humans , Image Processing, Computer-Assisted , Infant , Magnetic Resonance Imaging , Male , Reproducibility of Results , Retrospective Studies , Sensitivity and Specificity , Severity of Illness Index , Young Adult
2.
AJNR Am J Neuroradiol ; 28(9): 1796-802, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17893220

ABSTRACT

BACKGROUND AND PURPOSE: Children with congenital hemiparesis have greater asymmetry in diffusion parameters of the pyramidal tracts compared with control subjects. We hypothesized that the asymmetry correlates with the severity of hemiparesis and that diffusion metrics would be abnormal in the affected tracts and normal in the unaffected tracts. MATERIALS AND METHODS: Fifteen patients with congenital hemiparesis and 17 age-matched control subjects were studied with diffusion tensor MR imaging tractography. Hemipareses were scored as mild, moderate, or severe. We measured tract-specific diffusion parameters (fractional anisotropy, mean, and directional diffusion coefficients) of the pyramidal tracts. We compared tract-specific parameters and asymmetry between the right and left tracts of the differing severity groups and control subjects. RESULTS: We observed many different causes of congenital hemiparesis including venous infarction, arterial infarction, and polymicrogyria. Clinical severity of hemiparesis correlated with asymmetry in fractional anisotropy (P < .0001), transverse diffusivity (P < .0001), and mean diffusivity (P < .03). With increasing severity of hemiparesis, fractional anisotropy decreased (P < .0001) and transverse diffusivity (P < .0001) and mean diffusivity (P < .02) increased in the affected pyramidal tract compared with controls. Diffusion metrics in the unaffected tract were similar to those in the control subjects. CONCLUSION: Asymmetry in fractional anisotropy, transverse diffusivity, and mean diffusivity, as well as the degree of abnormality in the actual values of the affected pyramidal tracts themselves, correlates with the severity of motor dysfunction in infants and children with congenital hemiparesis from different causes. This suggests that abnormalities detected by diffusion tensor MR imaging tractography in the affected pyramidal tract are related to the functional ability of the affected pyramidal tract, regardless of the etiology of motor dysfunction.


Subject(s)
Diffusion Magnetic Resonance Imaging/methods , Movement Disorders/congenital , Movement Disorders/diagnosis , Nerve Fibers, Myelinated/pathology , Paresis/congenital , Paresis/pathology , Pyramidal Tracts/pathology , Female , Humans , Infant , Infant, Newborn , Male , Statistics as Topic
SELECTION OF CITATIONS
SEARCH DETAIL
...