Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Dev Dyn ; 252(1): 104-123, 2023 01.
Article in English | MEDLINE | ID: mdl-35708710

ABSTRACT

BACKGROUND: Movement of the lower jaw, a common behavior observed among vertebrates, is required for eating and processing food. This movement is controlled by signals sent from the trigeminal motor nerve through neuromuscular junctions (NMJs) to the masticatory muscles. Dysfunctional jaw movements contribute to craniomandibular disorders, yet the pathophysiology of these disorders is not well understood, as limited studies have been conducted on the molecular mechanisms of jaw movement. RESULTS: Using erc1b/kimm533 genetic loss of function mutant, we evaluated lower jaw muscle organization and innervation by the cranial motor nerves in developing zebrafish. Using time-lapse confocal imaging of the erc1b mutant in a transgenic fluorescent reporter line, we found delayed trigeminal nerve growth and disrupted nerve branching architecture during muscle innervation. By automated 3D image analysis of NMJ distribution, we identified an increased number of small, disorganized NMJ clusters in erc1b mutant larvae compared to WT siblings. Using genetic replacement experiments, we determined the Rab GTPase binding domain of Erc1b is required for cranial motor nerve branching, but not NMJ organization or muscle attachment. CONCLUSIONS: We identified Erc1b/ERC1 as a novel component of a genetic pathway contributing to muscle organization, trigeminal nerve outgrowth, and NMJ spatial distribution during development that is required for jaw movement.


Subject(s)
Motor Neurons , Zebrafish , Animals , Motor Neurons/physiology , Neuromuscular Junction/metabolism , Muscles , Jaw
2.
Alcohol ; 94: 1-8, 2021 08.
Article in English | MEDLINE | ID: mdl-33781922

ABSTRACT

Mixing alcohol (ethanol) with caffeinated beverages continues to be a common and risky practice. Energy drinks are one type of caffeinated beverage that may be especially problematic when used as mixers, due to their relatively high caffeine content in combination with their highly sweetened flavor profile. The present study used a mouse model of limited-access drinking and lickometer circuitry to examine the effects of an energy drink anid its caffeine content on ethanol consumption. Predictably, the highly sweetened energy drink significantly increased ethanol intake compared to a plain ethanol solution (6.34 ± 0.2 vs. 5.01 ± 0.3 g/kg; Cohen's d = 1.79). Interestingly, adulterating a plain ethanol solution with the same concentration of caffeine (without sweetener) found in the energy drink also increased ethanol intake (5.47 ± 0.3 vs. 4.11 ± 0.3 g/kg; Cohen's d = 1.4). A lower concentration of caffeine was without effect on ethanol drinking. Interestingly, plain caffeine solutions at both tested concentrations provoked high numbers of bottle contacts, indicating that the mice found the solution palatable. These findings suggest that altering the bitterness profile of an ethanol solution with the addition of caffeine can increase intake in a similar manner as sweetening the solution. Further, the findings underscore the importance of taste in motivating ethanol consumption and the potential role that caffeine can have in this process.


Subject(s)
Caffeine , Energy Drinks , Alcohol Drinking , Animals , Caffeine/pharmacology , Ethanol , Mice , Sweetening Agents
3.
Curr Top Dev Biol ; 124: 81-124, 2017.
Article in English | MEDLINE | ID: mdl-28335865

ABSTRACT

The zebrafish skeleton shares many similarities with human and other vertebrate skeletons. Over the past years, work in zebrafish has provided an extensive understanding of the basic developmental mechanisms and cellular pathways directing skeletal development and homeostasis. This review will focus on the cell biology of cartilage and bone and how the basic cellular processes within chondrocytes and osteocytes function to assemble the structural frame of a vertebrate body. We will discuss fundamental functions of skeletal cells in production and secretion of extracellular matrix and cellular activities leading to differentiation of progenitors to mature cells that make up the skeleton. We highlight important examples where findings in zebrafish provided direction for the search for genes causing human skeletal defects and also how zebrafish research has proven important for validating candidate human disease genes. The work we cover here illustrates utility of zebrafish in unraveling molecular mechanisms of cellular functions necessary to form and maintain a healthy skeleton.


Subject(s)
Bone Diseases/pathology , Disease Models, Animal , Zebrafish/embryology , Animals , Cartilage/embryology , Extracellular Matrix/metabolism , Humans , Macromolecular Substances/metabolism
4.
Alcohol Clin Exp Res ; 41(5): 955-964, 2017 May.
Article in English | MEDLINE | ID: mdl-28212464

ABSTRACT

BACKGROUND: Excessive ethanol (EtOH) consumption remains an important health concern and effective treatments are lacking. The central oxytocin system has emerged as a potentially important therapeutic target for alcohol and drug addiction. These studies tested the hypothesis that oxytocin reduces EtOH consumption. METHODS: Male C57BL/6J mice were given access to EtOH (20% v/v) using a model of binge-like drinking ("drinking in the dark") that also included the use of lickometer circuits to evaluate the temporal pattern of intake as well as 2-bottle choice drinking in the home cage. In addition, EtOH (12% v/v) and sucrose (5% w/v) self-administration on fixed- and progressive-ratio schedules were also evaluated. A wide range of systemically administered oxytocin doses were tested (0 to 10 mg/kg) in these models. RESULTS: Oxytocin (0, 0.3, 1, 3, or 10 mg/kg) dose dependently reduced EtOH consumption (maximal 45% reduction) in the binge drinking model, with lower effective doses having minimal effects on general locomotor activity. Oxytocin's effect was blocked by pretreatment with an oxytocin receptor antagonist, and the pattern of contacts (licks) at the EtOH bottle suggested a reduction in motivation to drink EtOH. Oxytocin decreased 2-bottle choice drinking without altering general fluid intake. Oxytocin also reduced operant responding for EtOH and sucrose in a dose-related manner. However, oxytocin decreased responding and motivation (breakpoint values) for EtOH at doses that did not alter responding for sucrose. CONCLUSIONS: These results indicate that oxytocin reduces EtOH consumption in different models of self-administration. The effects are not likely due to a general sedative effect of the neuropeptide. Further, oxytocin reduces motivation for EtOH at doses that do not alter responding for a natural reward (sucrose). While some evidence supports a role for oxytocin receptors in mediating these effects, additional studies are needed to further elucidate underlying mechanisms. Nevertheless, these results support the therapeutic potential of oxytocin as a treatment for alcohol use disorder.


Subject(s)
Binge Drinking/prevention & control , Ethanol/administration & dosage , Oxytocin/therapeutic use , Animals , Binge Drinking/psychology , Conditioning, Operant/drug effects , Conditioning, Operant/physiology , Dose-Response Relationship, Drug , Locomotion/drug effects , Locomotion/physiology , Male , Mice , Mice, Inbred C57BL , Oxytocin/pharmacology , Self Administration
SELECTION OF CITATIONS
SEARCH DETAIL
...