Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
NAR Genom Bioinform ; 6(2): lqae057, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38800828

ABSTRACT

Most clinical diagnostic and genomic research setups focus almost exclusively on coding regions and essential splice sites, thereby overlooking other non-coding variants. As a result, intronic variants that can promote mis-splicing events across a range of diseases, including cancer, are yet to be systematically investigated. Such investigations would require both genomic and transcriptomic data, but there currently exist very few datasets that satisfy these requirements. We address this by developing a single-nucleus full-length RNA-sequencing approach that allows for the detection of potentially pathogenic intronic variants. We exemplify the potency of our approach by applying pancreatic cancer tumor and tumor-derived specimens and linking intronic variants to splicing dysregulation. We specifically find that prominent intron retention and pseudo-exon activation events are shared by the tumors and affect genes encoding key transcriptional regulators. Our work paves the way for the assessment and exploitation of intronic mutations as powerful prognostic markers and potential therapeutic targets in cancer.

2.
Sci Rep ; 12(1): 4091, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35260714

ABSTRACT

Single cell multi-omics analysis has the potential to yield a comprehensive understanding of the cellular events that underlie the basis of human diseases. The cardinal feature to access this information is the technology used for single-cell isolation, barcoding, and sequencing. Most currently used single-cell RNA-sequencing platforms have limitations in several areas including cell selection, documentation and library chemistry. In this study, we describe a novel high-throughput, full-length, single-cell RNA-sequencing approach that combines the CellenONE isolation and sorting system with the ICELL8 processing instrument. This method offers substantial improvements in single cell selection, documentation and capturing rate. Moreover, it allows the use of flexible chemistry for library preparations and the analysis of living or fixed cells, whole cells independent of sizing and morphology, as well as of nuclei. We applied this method to dermal fibroblasts derived from six patients with different segmental progeria syndromes and defined phenotype associated pathway signatures with variant associated expression modifiers. These results validate the applicability of our method to highlight genotype-expression relationships for molecular phenotyping of individual cells derived from human patients.


Subject(s)
High-Throughput Nucleotide Sequencing , Single-Cell Analysis , Aging , Genotype , High-Throughput Nucleotide Sequencing/methods , Humans , Phenotype , RNA , Single-Cell Analysis/methods
3.
Cereb Cortex ; 27(12): 5696-5714, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29117290

ABSTRACT

The proliferative niches in the subpallium generate a rich cellular variety fated for diverse telencephalic regions. The embryonic preoptic area (POA) represents one of these domains giving rise to the pool of cortical GABAergic interneurons and glial cells, in addition to striatal and residual POA cells. The migration from sites of origin within the subpallium to the distant targets like the cerebral cortex, accomplished by the adoption and maintenance of a particular migratory morphology, is a critical step during interneuron development. To identify factors orchestrating this process, we performed single-cell transcriptome analysis and detected Dnmt1 expression in murine migratory GABAergic POA-derived cells. Deletion of Dnmt1 in postmitotic immature cells of the POA caused defective migration and severely diminished adult cortical interneuron numbers. We found that DNA methyltransferase 1 (DNMT1) preserves the migratory shape in part through negative regulation of Pak6, which stimulates neuritogenesis at postmigratory stages. Our data underline the importance of DNMT1 for the migration of POA-derived cells including cortical interneurons.


Subject(s)
Cell Movement/physiology , Cerebral Cortex/embryology , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , Interneurons/enzymology , Neural Stem Cells/enzymology , Preoptic Area/embryology , Animals , Animals, Newborn , Cell Count , Cell Survival/physiology , Cells, Cultured , Cerebral Cortex/cytology , Cerebral Cortex/enzymology , DNA Methylation , GABAergic Neurons/cytology , GABAergic Neurons/enzymology , Interneurons/cytology , Mice, Inbred C57BL , Mice, Transgenic , Neural Stem Cells/cytology , Neuronal Outgrowth/physiology , Preoptic Area/cytology , Preoptic Area/enzymology , Tissue Culture Techniques , Transcriptome , p21-Activated Kinases/genetics , p21-Activated Kinases/metabolism
4.
PLoS One ; 10(2): e0117818, 2015.
Article in English | MEDLINE | ID: mdl-25710561

ABSTRACT

Intrinsic and acquired resistance to the monoclonal antibody drug trastuzumab is a major problem in the treatment of HER2-positive breast cancer. A deeper understanding of the underlying mechanisms could help to develop new agents. Our intention was to detect genes and single nucleotide polymorphisms (SNPs) affecting trastuzumab efficiency in cell culture. Three HER2-positive breast cancer cell lines with different resistance phenotypes were analyzed. We chose BT474 as model of trastuzumab sensitivity, HCC1954 as model of intrinsic resistance, and BTR50, derived from BT474, as model of acquired resistance. Based on RNA-Seq data, we performed differential expression analyses on these cell lines with and without trastuzumab treatment. Differentially expressed genes between the resistant cell lines and BT474 are expected to contribute to resistance. Differentially expressed genes between untreated and trastuzumab treated BT474 are expected to contribute to drug efficacy. To exclude false positives from the candidate gene set, we removed genes that were also differentially expressed between untreated and trastuzumab treated BTR50. We further searched for SNPs in the untreated cell lines which could contribute to trastuzumab resistance. The analysis resulted in 54 differentially expressed candidate genes that might be connected to trastuzumab efficiency. 90% of 40 selected candidates were validated by RT-qPCR. ALPP, CALCOCO1, CAV1, CYP1A2 and IGFBP3 were significantly higher expressed in the trastuzumab treated than in the untreated BT474 cell line. GDF15, IL8, LCN2, PTGS2 and 20 other genes were significantly higher expressed in HCC1954 than in BT474, while NCAM2, COLEC12, AFF3, TFF3, NRCAM, GREB1 and TFF1 were significantly lower expressed. Additionally, we inferred SNPs in HCC1954 for CAV1, PTGS2, IL8 and IGFBP3. The latter also had a variation in BTR50. 20% of the validated subset have already been mentioned in literature. For half of them we called and analyzed SNPs. These results contribute to a better understanding of trastuzumab action and resistance mechanisms.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , Antineoplastic Agents/pharmacology , Breast Neoplasms/genetics , RNA, Messenger/metabolism , Up-Regulation/drug effects , Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Caveolin 1/genetics , Caveolin 1/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Drug Resistance, Neoplasm/drug effects , Female , Humans , Polymorphism, Single Nucleotide , Principal Component Analysis , Real-Time Polymerase Chain Reaction , Receptor, ErbB-2/metabolism , Sequence Analysis, RNA , Trastuzumab
5.
Mol Biol Cell ; 23(2): 247-57, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22114354

ABSTRACT

The inner membrane of mitochondria is especially protein rich and displays a unique morphology characterized by large invaginations, the mitochondrial cristae, and the inner boundary membrane, which is in proximity to the outer membrane. Mitochondrial inner membrane proteins appear to be not evenly distributed in the inner membrane, but instead organize into functionally distinct subcompartments. It is unknown how the organization of the inner membrane is achieved. We identified MINOS1/MIO10 (C1orf151/YCL057C-A), a conserved mitochondrial inner membrane protein. mio10-mutant yeast cells are affected in growth on nonfermentable carbon sources and exhibit altered mitochondrial morphology. At the ultrastructural level, mutant mitochondria display loss of inner membrane organization. Proteomic analyses reveal MINOS1/Mio10 as a novel constituent of Mitofilin/Fcj1 complexes in human and yeast mitochondria. Thus our analyses reveal new insight into the composition of the mitochondrial inner membrane organizing machinery.


Subject(s)
Membrane Proteins/metabolism , Mitochondria/enzymology , Mitochondria/ultrastructure , Mitochondrial Proteins/metabolism , Muscle Proteins/metabolism , Proton-Translocating ATPases/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Amino Acid Sequence , HEK293 Cells , Humans , Membrane Proteins/genetics , Mitochondrial Membranes/enzymology , Mitochondrial Membranes/ultrastructure , Mitochondrial Proteins/genetics , Molecular Sequence Data , Proton-Translocating ATPases/genetics , Saccharomyces cerevisiae/ultrastructure , Saccharomyces cerevisiae Proteins/genetics
6.
Clin Cancer Res ; 16(5): 1431-41, 2010 Mar 01.
Article in English | MEDLINE | ID: mdl-20179233

ABSTRACT

PURPOSE: Tumor progression correlates with the induction of a dense supply of blood vessels and the formation of peritumoral lymphatics. Hemangiogenesis and lymphangiogenesis are potently regulated by members of the vascular endothelial growth factor (VEGF) family. Previous studies have indicated the upregulation of VEGF-A and -C in progressed neuroblastoma, however, quantification was performed using semiquantitative methods, or patients who had received radiotherapy or chemotherapy were studied. EXPERIMENTAL DESIGN: We have analyzed primary neuroblastoma from 49 patients using real-time reverse transcription-PCR and quantified VEGF-A, -C, and -D and VEGF receptors (VEGFR)-1, 2, 3, as well as the soluble form of VEGFR2 (sVEGFR-2), which has recently been characterized as an endogenous inhibitor of lymphangiogenesis. None of the patients had received radiotherapy or chemotherapy before tumor resection. RESULTS: We did not observe upregulation of VEGF-A, -C, and -D in metastatic neuroblastoma, but found significant downregulation of the lymphangiogenesis inhibitor sVEGFR-2 in metastatic stages III, IV, and IVs. In stage IV neuroblastoma, there were tendencies for the upregulation of VEGF-A and -D and the downregulation of the hemangiogenesis/lymphangiogenesis inhibitors VEGFR-1 and sVEGFR-2 in MYCN-amplified tumors. Similarly, MYCN transfection of the neuroblastoma cell line SH-EP induced the upregulation of VEGF-A and -D and the switching-off of sVEGFR-2. CONCLUSION: We provide evidence for the downregulation of the lymphangiogenesis inhibitor sVEGFR-2 in metastatic neuroblastoma stages, which may promote lymphogenic metastases. Downregulation of hemangiogenesis and lymphangiogenesis inhibitors VEGFR-1 and sVEGFR-2, and upregulation of angiogenic activators VEGF-A and VEGF-D in MYCN-amplified stage IV neuroblastoma supports the crucial effect of this oncogene on neuroblastoma progression.


Subject(s)
Lymphangiogenesis/genetics , Neuroblastoma/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism , Disease Progression , Down-Regulation , Enzyme-Linked Immunosorbent Assay , Humans , N-Myc Proto-Oncogene Protein , Neoplasm Invasiveness/genetics , Neoplasm Staging , Neuroblastoma/genetics , Neuroblastoma/pathology , Nuclear Proteins/genetics , Oncogene Proteins/genetics , Reverse Transcriptase Polymerase Chain Reaction , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor C/genetics , Vascular Endothelial Growth Factor C/metabolism , Vascular Endothelial Growth Factor D/genetics , Vascular Endothelial Growth Factor D/metabolism , Vascular Endothelial Growth Factor Receptor-1/genetics , Vascular Endothelial Growth Factor Receptor-1/metabolism , Vascular Endothelial Growth Factor Receptor-2/genetics , Vascular Endothelial Growth Factor Receptor-3/genetics , Vascular Endothelial Growth Factor Receptor-3/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...