Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
MethodsX ; 9: 101800, 2022.
Article in English | MEDLINE | ID: mdl-35958097

ABSTRACT

Destructively sampling old Pedunculate oak (Quercus robur) trees on the active floodplain of the Middle Elbe to create an allometric equation to estimate carbon stocks (CS) and carbon sequestration rates (CSR) would defeat the purpose of protecting increasingly vulnerable and threatened primeval floodplain forests. To nondestructively estimate CS and CSR, we have adapted a two-parameter allometric equation which uses tree height (H) and diameter at breast height (DBH) (Dik 1984, Zianis et al. 2005) into a 1-parameter equation that requires only DBH to quantify stocks and annual changes in carbon stock (carbon sequestration rates) for individual Q. robur trees. The equations have also been adapted to estimate below- and above-ground carbon stocks of individual trees. The new method has:•Adapted a 2-parameter Quercus robur allometric equation which estimates tree volume to a 1-parameter equation which estimates above and below-ground carbon stock•Removed the requirement of tree height to reconstruct the carbon stock of trees at an annual timestep•An almost perfect linear relationship (Pearson R2= 0.998) between carbon sequestration rate and basal area increment (BAI).

2.
PLoS One ; 15(6): e0234936, 2020.
Article in English | MEDLINE | ID: mdl-32603350

ABSTRACT

Alluvial floodplain forests have been reduced drastically in many parts of Europe, due to deforestation, the transformation to settlement and expansion of agricultural areas. Although they have been heavily modified for centuries, generalized frameworks for their management are scarce and the complex interactions between the physical environment and biological processes are often not fully understood. As the zonation of woody species in floodplains is mainly determined by hydrological conditions, flooding tolerance can be regarded as a key factor for the successful establishment of woody species. Furthermore, the oxygen level of the flooding water might affect the responses to flooding. We examined the influence of flooding duration in combination with oxygen supply by aeration on the foliar injury and growth of six-week-old saplings of ten woody species, under controlled common garden conditions. Six of them are considered to be flooding tolerant whereas four are intolerant. In addition, seven are native whereas three are non-native species. During the experiment, the saplings were exposed to partial flooding of different durations (k = 3; three, six and nine weeks) and oxygen levels (k = 2; aerated and not aerated). For comparison, we included an unflooded control. We recorded foliar injury, plant height, number of leaves and stem diameter. We also included a long-term recovery period. Whereas foliar injury decreased for most species with increasing flooding duration, the typical floodplain forest species, classified as flooding tolerant developed better. The differences in species response to flooding could be most likely explained by their ability to react to the resulting stress in morphological, physiological and metabolic terms irrespective whether they are native or not. In addition, the inclusion of a recovery period seems to be important for the assessment of flooding tolerance.


Subject(s)
Acclimatization , Conservation of Natural Resources , Floods , Forests , Trees/physiology , Time Factors
3.
PLoS One ; 12(5): e0176869, 2017.
Article in English | MEDLINE | ID: mdl-28467463

ABSTRACT

Numerous restoration campaigns focused on re-establishing species-rich floodplain meadows of Central Europe, whose species composition is essentially controlled by regular flooding. Climate change predictions expect strong alterations on the discharge regime of Europe's large rivers with little-known consequences on floodplain meadow plants. In this study, we aim to determine the effects of flooding on seedlings of different ages of four typical flood meadow species. To this end, we flooded seedlings of two familial pairs of flood meadow species of wetter and dryer microhabitats for 2 weeks each, starting 2, 4, 6, and 8 weeks after seedling germination, respectively. We show that a 2-week-flooding treatment had a negative effect on performance of seedlings younger than 6 weeks. Summer floods with high floodwater temperatures may have especially detrimental effects on seedlings, which is corroborated by previous findings. As expected, the plants from wet floodplain meadow microhabitats coped better with the flooding treatment than those from dryer microhabitats. In conclusion, our results suggest that restoration measures may perform more successfully if seedlings of restored species are older than the critical age of about 6 weeks before a spring flooding begins. Seasonal flow patterns may influence vegetation dynamics of floodplain meadows and should, therefore, be taken into account when timing future restoration campaigns.


Subject(s)
Sanguisorba/physiology , Veronica/physiology , Age Factors , Floods , Germination/physiology , Grassland , Rivers , Sanguisorba/growth & development , Seedlings/growth & development , Seedlings/physiology , Stress, Physiological/physiology , Temperature , Veronica/growth & development
4.
PLoS One ; 10(5): e0124140, 2015.
Article in English | MEDLINE | ID: mdl-25950730

ABSTRACT

BACKGROUND: Floodplain meadows along rivers are semi-natural habitats and depend on regular land use. When used non-intensively, they offer suitable habitats for many plant species including rare ones. Floodplains are hydrologically dynamic ecosystems with both periods of flooding and of dry conditions. In German floodplains, dry periods may increase due to reduced summer precipitation as projected by climate change scenarios. Against this background, the question arises, how the forage quantity and quality of these meadows might change in future. METHODS: We report results of two field trials that investigated effects of experimentally reduced summer precipitation on hay quantity and quality of floodplain meadows at the Rhine River (2011-2012) and at two Elbe tributaries (2009-2011). We measured annual yield, the amount of hay biomass, and contents of crude protein, crude fibre, energy, fructan, nitrogen, phosphorus, and potassium. RESULTS: The annual yield decreased under precipitation reduction at the Rhine River. This was due to reduced productivity in the second cut hay at the Rhine River in which, interestingly, the contents of nitrogen and crude protein increased. The first cut at the Rhine River was unaffected by the treatments. At the Elbe tributaries, the annual yield and the hay quantity and quality of both cuts were only marginally affected by the treatments. CONCLUSION: We conclude that the yield of floodplain meadows may become less reliable in future since the annual yield decreased under precipitation reduction at the Rhine River. However, the first and agriculturally more important cut was almost unaffected by the precipitation reduction, which is probably due to sufficient soil moisture from winter/spring. As long as future water levels of the rivers will not decrease during spring, at least the use of the hay from the first cut of floodplain meadows appears reliable under climate change.


Subject(s)
Plant Development , Rain , Seasons , Adaptation, Physiological , Biomass , Germany , Grassland , Rivers
SELECTION OF CITATIONS
SEARCH DETAIL
...