Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Basic Res Cardiol ; 101(4): 336-45, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16705469

ABSTRACT

Children with congenital cyanotic heart defects have worse outcomes after surgical repair of their heart defects compared with noncyanotic ones. Institution of extracorporeal circulation in these children exposes the cyanotic heart to reoxygenation injury. Mitogen-activated protein kinase (MAPK) signaling cascades are major regulators of cardiomyocyte function in acute hypoxia and reoxygenation. However, their roles in chronic hypoxia are incompletely understood. We determined myocardial activation of the three major MAPKs, c-Jun NH2-terminal kinase (JNK), extracellular signal-regulated kinase-1/2 (ERK1/2), and p38-MAPK in adult rats exposed to hypoxia (FIO2=0.10) for varying periods of time. Myocardial function was analyzed in isolated perfused hearts. Acute hypoxia stimulated JNK and p38-MAPK activation. Chronic hypoxia (2 weeks) was associated with increased p38-MAPK (but not JNK) activation, increased apoptosis, and impaired posthypoxic recovery of LV function. Brief normoxic episodes (1 h/day) during chronic hypoxia abolished p38-MAPK activation, stimulated MEK-ERK1/2 activation modestly, and restored posthypoxic LV function. In vivo p38-MAPK inhibition by SB203580 or SB202190 in chronically hypoxic rats restored posthypoxic LV function. These results indicate that sustained hypoxemia maintains p38-MAPK in a chronically activated state that predisposes to myocardial impairment upon reoxygenation. Brief normoxic episodes during chronic hypoxia prevent p38-MAPK activation and restore posthypoxic recovery of myocardial function.


Subject(s)
Hypoxia/physiopathology , MAP Kinase Signaling System/physiology , Oxygen/physiology , Ventricular Function, Left , Animals , Apoptosis/physiology , Hypoxia/blood , Hypoxia/therapy , Male , Mitogen-Activated Protein Kinases/metabolism , Oxygen/therapeutic use , Phosphorylation , Rats , Rats, Sprague-Dawley , Time Factors , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...