Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 122023 05 05.
Article in English | MEDLINE | ID: mdl-37145113

ABSTRACT

To colonize a host, bacteria depend on an ensemble of signaling systems to convert information about the various environments encountered within the host into specific cellular activities. How these signaling systems coordinate transitions between cellular states in vivo remains poorly understood. To address this knowledge gap, we investigated how the bacterial symbiont Vibrio fischeri initially colonizes the light organ of the Hawaiian bobtail squid Euprymna scolopes. Previous work has shown that the small RNA Qrr1, which is a regulatory component of the quorum-sensing system in V. fischeri, promotes host colonization. Here, we report that transcriptional activation of Qrr1 is inhibited by the sensor kinase BinK, which suppresses cellular aggregation by V. fischeri prior to light organ entry. We show that Qrr1 expression depends on the alternative sigma factor σ54 and the transcription factors LuxO and SypG, which function similar to an OR logic gate, thereby ensuring Qrr1 is expressed during colonization. Finally, we provide evidence that this regulatory mechanism is widespread throughout the Vibrionaceae family. Together, our work reveals how coordination between the signaling pathways underlying aggregation and quorum-sensing promotes host colonization, which provides insight into how integration among signaling systems facilitates complex processes in bacteria.


Subject(s)
DNA-Binding Proteins , Symbiosis , Animals , DNA-Binding Proteins/metabolism , Aliivibrio fischeri/genetics , Quorum Sensing , Transcription Factors/metabolism , Decapodiformes/microbiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
2.
J Bacteriol ; 203(15): e0015521, 2021 07 08.
Article in English | MEDLINE | ID: mdl-34031036

ABSTRACT

The symbiosis between the Hawaiian bobtail squid, Euprymna scolopes, and its exclusive light organ symbiont, Vibrio fischeri, provides a natural system in which to study host-microbe specificity and gene regulation during the establishment of a mutually beneficial symbiosis. Colonization of the host relies on bacterial biofilm-like aggregation in the squid mucus field. Symbiotic biofilm formation is controlled by a two-component signaling (TCS) system consisting of regulators RscS-SypF-SypG, which together direct transcription of the symbiosis polysaccharide Syp. TCS systems are broadly important for bacteria to sense environmental cues and then direct changes in behavior. Previously, we identified the hybrid histidine kinase BinK as a strong negative regulator of V. fischeri biofilm regulation, and here we further explore the function of BinK. To inhibit biofilm formation, BinK requires the predicted phosphorylation sites in both the histidine kinase (H362) and receiver (D794) domains. Furthermore, we show that RscS is not essential for host colonization when binK is deleted from strain ES114, and imaging of aggregate size revealed no benefit to the presence of RscS in a background lacking BinK. Strains lacking RscS still suffered in competition. Finally, we show that BinK functions to inhibit biofilm gene expression in the light organ crypts, providing evidence for biofilm gene regulation at later stages of host colonization. Overall, this study provides direct evidence for opposing activities of RscS and BinK and yields novel insights into biofilm regulation during the maturation of a beneficial symbiosis. IMPORTANCE Bacteria are often in a biofilm state, and transitions between planktonic and biofilm lifestyles are important for pathogenic, beneficial, and environmental microbes. The critical nature of biofilm formation during Vibrio fischeri colonization of the Hawaiian bobtail squid light organ provides an opportunity to study development of this process in vivo using a combination of genetic and imaging approaches. The current work refines the signaling circuitry of the biofilm pathway in V. fischeri, provides evidence that biofilm regulatory changes occur in the host, and identifies BinK as one of the regulators of that process. This study provides information about how bacteria regulate biofilm gene expression in an intact animal host.


Subject(s)
Aliivibrio fischeri/enzymology , Aliivibrio fischeri/growth & development , Bacterial Proteins/metabolism , Biofilms , Histidine Kinase/metabolism , Aliivibrio fischeri/genetics , Aliivibrio fischeri/physiology , Animals , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Decapodiformes/microbiology , Decapodiformes/physiology , Histidine Kinase/chemistry , Histidine Kinase/genetics , Protein Domains , Symbiosis
3.
mBio ; 12(2)2021 03 09.
Article in English | MEDLINE | ID: mdl-33688014

ABSTRACT

The lifelong relationship between the Hawaiian bobtail squid Euprymna scolopes and its microbial symbiont Vibrio fischeri represents a simplified model system for studying microbiome establishment and maintenance. The bacteria colonize a dedicated symbiotic light organ in the squid, from which bacterial luminescence camouflages the host in a process termed counterillumination. The squid host hatches without its symbionts, which must be acquired from the ocean amidst a diversity of nonbeneficial bacteria, such that precise molecular communication is required for initiation of the specific relationship. Therefore it is likely there are specialized metabolites used in the light organ microenvironment to modulate these processes. To identify small molecules that may influence the establishment of this symbiosis, we used imaging mass spectrometry to analyze metabolite production in V. fischeri with altered biofilm production, which correlates directly to colonization capability in its host. "Biofilm-up" and "biofilm-down" mutants were compared to a wild-type strain, and ions that were more abundantly produced by the biofilm-up mutant were detected. Using a combination of structural elucidation and synthetic chemistry, one such signal was determined to be a diketopiperazine, cyclo(d-histidyl-l-proline). This diketopiperazine modulated luminescence in V. fischeri and, using imaging mass spectrometry, was directly detected in the light organ of the colonized host. This work highlights the continued need for untargeted discovery efforts in host-microbe interactions and showcases the benefits of the squid-Vibrio system for identification and characterization of small molecules that modulate microbiome behaviors.IMPORTANCE The complexity of animal microbiomes presents challenges to defining signaling molecules within the microbial consortium and between the microbes and the host. By focusing on the binary symbiosis between Vibrio fischeri and Euprymna scolopes, we have combined genetic analysis with direct imaging to define and study small molecules in the intact symbiosis. We have detected and characterized a diketopiperazine produced by strong biofilm-forming V. fischeri strains that was detectable in the host symbiotic organ, and which influences bacterial luminescence. Biofilm formation and luminescence are critical for initiation and maintenance of the association, respectively, suggesting that the compound may link early and later development stages, providing further evidence that multiple small molecules are important in establishing these beneficial relationships.


Subject(s)
Aliivibrio fischeri/metabolism , Decapodiformes/microbiology , Host Microbial Interactions , Symbiosis , Aliivibrio fischeri/chemistry , Aliivibrio fischeri/genetics , Animals , Biofilms/growth & development , Diketopiperazines/metabolism , Luminescence , Mass Spectrometry , Microbial Consortia/genetics , Microbial Consortia/physiology , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...