Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
EJNMMI Phys ; 8(1): 60, 2021 Aug 18.
Article in English | MEDLINE | ID: mdl-34406515

ABSTRACT

BACKGROUND: Actinium-225 is an alpha-particle emitter under investigation for use in radiopharmaceutical therapy. To address limited supply, accelerator-produced 225Ac has been recently made available. Accelerator-produced 225Ac via 232Th irradiation (denoted 225/7Ac) contains a low percentage (0.1-0.3%) of 227Ac (21.77-year half-life) activity at end of bombardment. Using pharmacokinetic modeling, we have examined the dosimetric impact of 227Ac on the use of accelerator-produced 225Ac for radiopharmaceutical therapy. We examine the contribution of 227Ac and its daughters to tissue absorbed doses. The dosimetric analysis was performed for antibody-conjugated 225/7Ac administered intravenously to treat patients with hematological cancers. Published pharmacokinetic models are used to obtain the distribution of 225/7Ac-labeled antibody and also the distribution of either free or antibody-conjugated 227Th. RESULTS: Based on our modeling, the tissue specific absorbed dose from 227Ac would be negligible in the context of therapy, less than 0.02 mGy/MBq for the top 6 highest absorbed tissues and less than 0.007 mGy/MBq for all other tissues. Compared to that from 225Ac, the absorbed dose from 227Ac makes up a very small component (less than 0.04%) of the total absorbed dose delivered to the 6 highest dose tissues: red marrow, spleen, endosteal cells, liver, lungs and kidneys when accelerator produced 225/7Ac-conjugated anti-CD33 antibody is used to treat leukemia patients. For all tissues, the dominant contributor to the absorbed dose arising from the 227Ac is 227Th, the first daughter of 227Ac which has the potential to deliver absorbed dose both while it is antibody-bound and while it is free. CONCLUSIONS: These results suggest that the absorbed dose arising from 227Ac to normal organs would be negligible for an 225/7Ac-labeled antibody that targets hematological cancer.

2.
Cancer Med ; 10(3): 1128-1140, 2021 02.
Article in English | MEDLINE | ID: mdl-33347715

ABSTRACT

PURPOSE: Despite the availability of new drugs, many patients with acute myeloid leukemia (AML) do not achieve remission and outcomes remain poor. Venetoclax is a promising new therapy approved for use in combination with a hypomethylating agent or with low-dose cytarabine for the treatment of newly diagnosed older AML patients or those ineligible for intensive chemotherapy. 225 Actinium-lintuzumab (225 Ac-lintuzumab) is a clinical stage radioimmunotherapy targeting CD33 that has shown evidence of single-agent activity in relapsed/refractory AML. Increased expression of MCL-1 is a mediator of resistance to venetoclax in cancer. EXPERIMENTAL DESIGN: Here we investigated the potential for 225 Ac-lintuzumab-directed DNA damage to suppress MCL-1 levels as a possible mechanism of reversing resistance to venetoclax in two preclinical in vivo models of AML. RESULTS: We demonstrated that 225 Ac-lintuzumab in combination with venetoclax induced a synergistic increase in tumor cell killing compared to treatment with either drug alone in venetoclax-resistant AML cell lines through both an induction of double-stranded DNA breaks (DSBs) and depletion of MCL-1 protein levels. Further, this combination led to significant tumor growth control and prolonged survival benefit in venetoclax-resistant in vivo AML models. CONCLUSIONS: There results suggest that the combination of 225 Ac-lintuzumab with venetoclax is a promising therapeutic strategy for the treatment of patients with venetoclax-resistant AML. Clinical trial of this combination therapy (NCT03867682) is currently ongoing.


Subject(s)
Actinium/chemistry , Antibodies, Monoclonal, Humanized/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Drug Resistance, Neoplasm , Leukemia, Myeloid, Acute/drug therapy , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Sialic Acid Binding Ig-like Lectin 3/immunology , Sulfonamides/pharmacology , Animals , Antibodies, Monoclonal, Humanized/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents, Immunological/chemistry , Antineoplastic Agents, Immunological/pharmacology , Apoptosis , Cell Proliferation , Female , Humans , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Mice , Mice, SCID , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
3.
Oncotarget ; 11(39): 3571-3581, 2020 Sep 29.
Article in English | MEDLINE | ID: mdl-33062193

ABSTRACT

Chimeric antigen receptor (CAR) T cell therapies, and adoptive cell therapy (ACT) in general, represent one of the most promising anti-cancer strategies. Conditioning has been shown to improve the immune homeostatic environment to enable successful ACT or CAR-T engraftment and expansion in vivo following infusion, and represents potential point of intervention to decrease serious toxicities following CAR-T treatment. In contrast to relatively non-specific chemotherapy-derived lymphodepletion, targeted lymphodepletion with radioimmunotherapy (RIT) directed to CD45 may be a safer and more effective alternative to target and deplete immune cells. Here we describe the results of preclinical studies with an anti-mouse CD45 antibody 30F11, labeled with two different beta-emitters 131Iodine (131I) and 177Lutetium (177Lu), to investigate the effect of anti-CD45 RIT lymphodepletion on immune cell types and on tumor control in a model of adoptive cell therapy. Treatment of mice with 3.7 MBq 131I-30F11 or 1.48 MBq 177Lu-30F11 safely depleted immune cells such as spleen CD4+ and CD8+ T Cells, B and NK cells as well as Tregs in OT I tumor model while sparing RBC and platelets and enabled E. G7 tumor control. Our results support the application of CD45-targeted RIT lymphodepletion with a non-myeloablative dose of 131I-30F11 or 177Lu-30F11 antibody prior to adoptive cell therapy.

4.
Cancer Immunol Res ; 8(10): 1300-1310, 2020 10.
Article in English | MEDLINE | ID: mdl-32873605

ABSTRACT

The programmed cell death protein 1 receptor (PD-1) and programmed death ligand 1 (PD-L1) coinhibitory pathway suppresses T-cell-mediated immunity. We hypothesized that cotargeting of PD-1 and PD-L1 with a bispecific antibody molecule could provide an alternative therapeutic approach, with enhanced antitumor activity, compared with monospecific PD-1 and PD-L1 antibodies. Here, we describe LY3434172, a bispecific IgG1 mAb with ablated Fc immune effector function that targets both human PD-1 and PD-L1. LY3434172 fully inhibited the major inhibitory receptor-ligand interactions in the PD-1 pathway. LY3434172 enhanced functional activation of T cells in vitro compared with the parent anti-PD-1 and anti-PD-L1 antibody combination or respective monotherapies. In mouse tumor models reconstituted with human immune cells, LY3434172 therapy induced dramatic and potent antitumor activity compared with each parent antibody or their combination. Collectively, these results demonstrated the enhanced immunomodulatory (immune blockade) properties of LY3434172, which improved antitumor immune response in preclinical studies, thus supporting its evaluation as a novel bispecific cancer immunotherapy.


Subject(s)
Antibodies, Bispecific/pharmacology , B7-H1 Antigen/antagonists & inhibitors , Immunotherapy/methods , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Animals , Antibodies, Bispecific/immunology , B7-H1 Antigen/immunology , CHO Cells , Cricetulus , Female , Humans , Lymphocyte Activation , Mice , Mice, Inbred NOD , Mice, SCID , Molecular Targeted Therapy , Programmed Cell Death 1 Receptor/immunology , T-Lymphocytes/immunology , Xenograft Model Antitumor Assays
5.
Mol Cancer Ther ; 19(4): 988-998, 2020 04.
Article in English | MEDLINE | ID: mdl-32241872

ABSTRACT

The CD137 receptor plays a key role in mediating immune response by promoting T cell proliferation, survival, and memory. Effective agonism of CD137 has the potential to reinvigorate potent antitumor immunity either alone or in combination with other immune-checkpoint therapies. In this study, we describe the discovery and characterization of a unique CD137 agonist, 7A5, a fully human IgG1 Fc effector-null monoclonal antibody. The biological properties of 7A5 were investigated through in vitro and in vivo studies. 7A5 binds CD137, and the binding epitope overlaps with the CD137L binding site based on structure. 7A5 engages CD137 receptor and activates NF-κB cell signaling independent of cross-linking or Fc effector function. In addition, T cell activation measured by cytokine IFNγ production is induced by 7A5 in peripheral blood mononuclear cell costimulation assay. Human tumor xenograft mouse models reconstituted with human immune cells were used to determine antitumor activity in vivo. Monotherapy with 7A5 inhibits tumor growth, and this activity is enhanced in combination with a PD-L1 antagonist antibody. Furthermore, the intratumoral immune gene expression signature in response to 7A5 is highly suggestive of enhanced T cell infiltration and activation. Taken together, these results demonstrate 7A5 is a differentiated CD137 agonist antibody with biological properties that warrant its further development as a cancer immunotherapy. GRAPHICAL ABSTRACT: http://mct.aacrjournals.org/content/molcanther/19/4/988/F1.large.jpg.


Subject(s)
Antibodies, Monoclonal/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Lymphocyte Activation/immunology , Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology , Animals , Apoptosis , CD8-Positive T-Lymphocytes/immunology , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/pathology , Cell Proliferation , Female , Humans , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Mice , Mice, Inbred NOD , Mice, SCID , NF-kappa B/metabolism , Signal Transduction , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
6.
Oncoimmunology ; 8(8): 1607673, 2019.
Article in English | MEDLINE | ID: mdl-31413916

ABSTRACT

Daratumumab is an anti-CD38 directed monoclonal antibody approved for the treatment of multiple myeloma (MM) and functions primarily via Fc-mediated effector mechanisms such as complement-dependent cytotoxicity (CDC), antibody-dependent cell cytotoxicity (ADCC), antibody-dependent cellular phagocytosis, and T-cell activation. However, not all patients respond to daratumumab therapy and management of MM remains challenging. Radioimmunotherapy with alpha particle-emitting radionuclides represents a promising approach to significantly enhance the potency of therapeutic antibodies in cancer treatment. Here we report the results of mechanistic and feasibility studies using daratumumab radiolabeled with an alpha-emitter 225Actinium for therapy of MM. CD38-positivelymphoma Daudi cell line and MM cell lines KMS-28BM and KMS-28PE were treated in vitro with 225Ac-daratumumab. 225Ac-daratumumab Fc-functional properties were assessed with C1q binding and ADCC assays. The pharmacokinetics and tumor uptake of 111In-daratumumab in Daudi tumor-bearing severe combined immunodeficiency (SCID) mice were measured with microSPECT/CT. The therapeutic effects of 225Ac-daratumumab on Daudi and KSM28BM tumors in mice and treatment side effects were evaluated for 50 days posttreatment. The safety of 225Ac-labeled antimurine CD38 mAb in immunocompetent mice was also evaluated. 225Ac-daratumumab efficiently and specifically killed CD38-positive tumor cells in vitro, while its complement binding and ADCC functions remained unaltered. MicroSPECT/CT imaging demonstrated fast clearance of the radiolabeled daratumumab from the circulation and tissues, but prolonged retention in the tumor up to 10 days. Therapy and safety experiments with 225Ac-daratumumab showed a significant increase in the antitumor potency in comparison to naked antibody without any significant side effects. Our results highlight the potential of targeting alpha-emitters to tumors as a therapeutic approach and suggest that 225Ac-daratumumab may be a promising therapeutic strategy for the treatment of hematologic malignancies.

7.
J Immunother Cancer ; 6(1): 45, 2018 06 04.
Article in English | MEDLINE | ID: mdl-29866166

ABSTRACT

Unfortunately, after publication of this article [1], it was noticed that corrections to the legends of Figs. 1 and 2 were not correctly incorporated. The correct legends can be seen below.

8.
J Immunother Cancer ; 6(1): 31, 2018 04 30.
Article in English | MEDLINE | ID: mdl-29712568

ABSTRACT

BACKGROUND: Modulation of the PD-1/PD-L1 axis through antagonist antibodies that block either receptor or ligand has been shown to reinvigorate the function of tumor-specific T cells and unleash potent anti-tumor immunity, leading to durable objective responses in a subset of patients across multiple tumor types. RESULTS: Here we describe the discovery and preclinical characterization of LY3300054, a fully human IgG1λ monoclonal antibody that binds to human PD-L1 with high affinity and inhibits interactions of PD-L1 with its two cognate receptors PD-1 and CD80. The functional activity of LY3300054 on primary human T cells is evaluated using a series of in vitro T cell functional assays and in vivo models using human-immune reconstituted mice. LY3300054 is shown to induce primary T cell activation in vitro, increase T cell activation in combination with anti-CTLA4 antibody, and to potently enhance anti-tumor alloreactivity in several xenograft mouse tumor models with reconstituted human immune cells. High-content molecular analysis of tumor and peripheral tissues from animals treated with LY3300054 reveals distinct adaptive immune activation signatures, and also previously not described modulation of innate immune pathways. CONCLUSIONS: LY3300054 is currently being evaluated in phase I clinical trials for oncology indications.


Subject(s)
Antibodies, Monoclonal/pharmacology , B7-H1 Antigen/antagonists & inhibitors , Immunoglobulin G/immunology , Neoplasms/immunology , Animals , Cell Line , Cricetulus , Female , Humans , Macaca fascicularis , Mice , T-Lymphocytes/drug effects , T-Lymphocytes/immunology
9.
Clin Cancer Res ; 22(21): 5204-5210, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27797971

ABSTRACT

PURPOSE: Tyrosinase-related protein-1 (TYRP1) is a transmembrane glycoprotein that is specifically expressed in melanocytes and melanoma cells. Preclinical data suggest that mAbs targeting TYRP1 confer antimelanoma activity. IMC-20D7S is a recombinant human IgG1 mAb targeting TYRP1. Here, we report the first-in-human phase I/Ib trial of IMC-20D7S. EXPERIMENTAL DESIGN: The primary objective of this study was to establish the safety profile and the MTD of IMC-20D7S. Patients with advanced melanoma who progressed after or during at least one line of treatment or for whom standard therapy was not indicated enrolled in this standard 3 + 3 dose-escalation, open-label study. IMC-20D7S was administered intravenously every 2 or 3 weeks. RESULTS: Twenty-seven patients were enrolled. The most common adverse events were fatigue and constipation experienced by nine (33%) and eight (30%) patients, respectively. There were no serious adverse events related to treatment, no discontinuations of treatment due to adverse events, and no treatment-related deaths. Given the absence of dose-limiting toxicities, an MTD was not defined, but a provisional MTD was established at the 20 mg/kg every 2-week dose based on serum concentration and safety data. One patient experienced a complete response. A disease control rate, defined as stable disease or better, of 41% was observed. CONCLUSION: IMC-20D7S is well tolerated among patients with advanced melanoma with evidence of antitumor activity. Further investigation of this agent as monotherapy in selected patients or as part of combination regimens is warranted. Clin Cancer Res; 22(21); 5204-10. ©2016 AACR.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Antineoplastic Agents/therapeutic use , Melanoma/drug therapy , Membrane Glycoproteins/immunology , Oxidoreductases/immunology , Aged , Aged, 80 and over , Antibodies, Monoclonal/immunology , Dose-Response Relationship, Drug , Drug Administration Schedule , Female , Humans , Immunoglobulin G/immunology , Male , Melanoma/metabolism , Middle Aged , Recombinant Proteins/therapeutic use
10.
Dis Model Mech ; 9(5): 563-71, 2016 05 01.
Article in English | MEDLINE | ID: mdl-27056048

ABSTRACT

Activating mutations in fibroblast growth factor receptor 3 (FGFR3) have been identified in multiple types of human cancer and in congenital birth defects. In human lung cancer, fibroblast growth factor 9 (FGF9), a high-affinity ligand for FGFR3, is overexpressed in 10% of primary resected non-small cell lung cancer (NSCLC) specimens. Furthermore, in a mouse model where FGF9 can be induced in lung epithelial cells, epithelial proliferation and ensuing tumorigenesis is dependent on FGFR3. To develop new customized therapies for cancers that are dependent on FGFR3 activation, we have used this mouse model to evaluate a human monoclonal antibody (D11) with specificity for the extracellular ligand-binding domain of FGFR3, that recognizes both human and mouse forms of the receptor. Here, we show that D11 effectively inhibits signaling through FGFR3 in vitro, inhibits the growth of FGFR3-dependent FGF9-induced lung adenocarcinoma in mice, and reduces tumor-associated morbidity. Given the potency of FGF9 in this mouse model and the absolute requirement for signaling through FGFR3, this study validates the D11 antibody as a potentially useful and effective reagent for treating human cancers or other pathologies that are dependent on activation of FGFR3.


Subject(s)
Adenocarcinoma/drug therapy , Adenocarcinoma/pathology , Antibodies, Monoclonal/therapeutic use , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Receptor, Fibroblast Growth Factor, Type 3/metabolism , Adenocarcinoma of Lung , Animals , Antibodies, Blocking/pharmacology , Antibodies, Monoclonal/pharmacology , Bronchioles/pathology , Cell Proliferation/drug effects , Fibroblast Growth Factor 9/metabolism , Humans , Ligands , Macrophages/drug effects , Macrophages/metabolism , Macrophages/pathology , Mice , Pulmonary Alveoli/pathology
11.
Mol Cancer Res ; 13(12): 1615-26, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26263910

ABSTRACT

UNLABELLED: Despite a recent shift away from anti-insulin-like growth factor I receptor (IGF-IR) therapy, this target has been identified as a key player in the resistance mechanisms to various conventional and targeted agents, emphasizing its value as a therapy, provided that it is used in the right patient population. Molecular markers predictive of antitumor activity of IGF-IR inhibitors remain largely unidentified. The aim of this study is to evaluate the impact of insulin receptor (IR) isoforms on the antitumor efficacy of cixutumumab, a humanized mAb against IGF-IR, and to correlate their expression with therapeutic outcome. The data demonstrate that expression of total IR rather than individual IR isoforms inversely correlates with single-agent cixutumumab efficacy in pediatric solid tumor models in vivo. Total IR, IR-A, and IR-B expression adversely affects the outcome of cixutumumab in combination with chemotherapy in patient-derived xenograft models of lung adenocarcinoma. IR-A overexpression in tumor cells confers complete resistance to cixutumumab in vitro and in vivo, whereas IR-B results in a partial resistance. Resistance in IR-B-overexpressing cells is fully reversed by anti-IGF-II antibodies, suggesting that IGF-II is a driver of cixutumumab resistance in this setting. The present study links IR isoforms, IGF-II, and cixutumumab efficacy mechanistically and identifies total IR as a biomarker predictive of intrinsic resistance to anti-IGF-IR antibody. IMPLICATIONS: This study identifies total IR as a biomarker predictive of primary resistance to IGF-IR antibodies and provides a rationale for new clinical trials enriched for patients whose tumors display low IR expression.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Antigens, CD/metabolism , Drug Resistance, Neoplasm , Lung Neoplasms/genetics , Receptor, Insulin/metabolism , Antibodies, Monoclonal, Humanized , Antigens, CD/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , MCF-7 Cells , Protein Isoforms/genetics , Protein Isoforms/metabolism , Receptor, IGF Type 1/antagonists & inhibitors , Receptor, Insulin/genetics , Up-Regulation , Xenograft Model Antitumor Assays
12.
MAbs ; 7(5): 931-45, 2015.
Article in English | MEDLINE | ID: mdl-26073904

ABSTRACT

Bi-specific antibodies (BsAbs), which can simultaneously block 2 tumor targets, have emerged as promising therapeutic alternatives to combinations of individual monoclonal antibodies. Here, we describe the engineering and development of a novel, human bi-functional antibody-receptor domain fusion molecule with ligand capture (bi-AbCap) through the fusion of the domain 2 of human vascular endothelial growth factor receptor 1 (VEGFR1) to an antibody directed against insulin-like growth factor - type I receptor (IGF-IR). The bi-AbCap possesses excellent stability and developability, and is the result of minimal engineering. Beyond potent neutralizing activities against IGF-IR and VEGF, the bi-AbCap is capable of cross-linking VEGF to IGF-IR, leading to co-internalization and degradation of both targets by tumor cells. In multiple mouse xenograft tumor models, the bi-AbCap improves anti-tumor activity over individual monotherapies. More importantly, it exhibits superior inhibition of tumor growth, compared with the combination of anti-IGF-IR and anti-VEGF therapies, via powerful blockade of both direct tumor cell growth and tumor angiogenesis. The unique "capture-for-degradation" mechanism of the bi-AbCap is informative for the design of next-generation bi-functional anti-cancer therapies directed against independent signaling pathways. The bi-AbCap design represents an alternative approach to the creation of dual-targeting antibody fusion molecules by taking advantage of natural receptor-ligand interactions.


Subject(s)
Antibodies, Bispecific/pharmacology , Antibodies, Neutralizing/pharmacology , Receptors, Somatomedin/antagonists & inhibitors , Recombinant Fusion Proteins/pharmacology , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Animals , Antibodies, Monoclonal/pharmacology , Antibody Affinity , Chromatography, High Pressure Liquid , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immunoblotting , Immunoprecipitation , Mice , Mice, Nude , Microscopy, Confocal , Neoplasms, Experimental/drug therapy , Protein Stability , Receptor, IGF Type 1 , Surface Plasmon Resonance , Xenograft Model Antitumor Assays
13.
Clin Cancer Res ; 20(10): 2651-62, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24599933

ABSTRACT

PURPOSE: To investigate the autocrine/endocrine role of Id1-induced insulin-like growth factor-II (IGF-II) in esophageal cancer, and evaluate the potential of IGF-II- and IGF-type I receptor (IGF-IR)-targeted therapies. EXPERIMENTAL DESIGN: Antibody array-based screening was used to identify differentially secreted growth factors from Id1-overexpressing esophageal cancer cells. In vitro and in vivo assays were performed to confirm the induction of IGF-II by Id1, and to study the autocrine and endocrine effects of IGF-II in promoting esophageal cancer progression. Human esophageal cancer tissue microarray was analyzed for overexpression of IGF-II and its correlation with that of Id1 and phosphorylated AKT (p-AKT). The efficacy of intratumorally injected IGF-II antibody and intraperitoneally injected cixutumumab (fully human monoclonal IGF-IR antibody) was evaluated using in vivo tumor xenograft and experimental metastasis models. RESULTS: Id1 overexpression induced IGF-II secretion, which promoted cancer cell proliferation, survival, and invasion by activating AKT in an autocrine manner. Overexpression of IGF-II was found in 21 of 35 (60%) esophageal cancer tissues and was associated with upregulation of Id1 and p-AKT. IGF-II secreted by Id1-overexpressing esophageal cancer xenograft could instigate the growth of distant esophageal tumors, as well as promote metastasis of circulating cancer cells. Targeting IGF-II and IGF-IR had significant suppressive effects on tumor growth and metastasis in mice. Cixutumumab treatment enhanced the chemosensitivity of tumor xenografts to fluorouracil and cisplatin. CONCLUSIONS: The Id1-IGF-II-IGF-IR-AKT signaling cascade plays an important role in esophageal cancer progression. Blockade of IGF-II/IGF-IR signaling has therapeutic potential in the management of esophageal cancer.


Subject(s)
Esophageal Neoplasms/metabolism , Inhibitor of Differentiation Protein 1/metabolism , Insulin-Like Growth Factor II/metabolism , Receptor, IGF Type 1/metabolism , Animals , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/pharmacology , Antimetabolites, Antineoplastic/pharmacology , Autocrine Communication , Blotting, Western , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Resistance, Neoplasm/drug effects , Endocrine System/metabolism , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/pathology , Fluorouracil/pharmacology , Humans , Inhibitor of Differentiation Protein 1/genetics , Insulin-Like Growth Factor II/genetics , Insulin-Like Growth Factor II/immunology , Lung Neoplasms/metabolism , Lung Neoplasms/prevention & control , Lung Neoplasms/secondary , Mice , Mice, Nude , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA Interference , Receptor, IGF Type 1/antagonists & inhibitors , Receptor, IGF Type 1/genetics , Signal Transduction/drug effects , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
14.
Biotechnol Bioeng ; 110(11): 2928-37, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23740533

ABSTRACT

Recent advances in mammalian cell culture processes have significantly increased product titers, but have also resulted in substantial increases in cell density and cellular debris as well as process and product related impurities. As such, with improvements in titer, corresponding improvements in downstream processing are essential. In this study we have developed an alternative antibody harvest process that incorporates flocculation using a novel stimulus responsive polymer, benzylated poly(allylamine), followed by depth filtration. As tested on multiple antibodies, this process demonstrates high process yield, improved clearance of cells and cell debris, and efficient reduction of aggregates, host cell proteins (HCP) and DNA. A wide operating window was established for this novel flocculation process through design of experiments condition screening and optimization. Residual levels of impurities in the Protein A eluate were achieved that potentially meet requirements of drug substance and thus alleviate the burden for further impurities removal in subsequent chromatography steps. In addition, efficient clearance of residual polymer was demonstrated using a fluorescence tagged polymer in the presence of a stimulus reagent. The mechanism of HCP and aggregates removal during flocculation was also explored. This novel and efficient process can be easily integrated into current mAb purification platforms, and may overcome downstream processing challenges.


Subject(s)
Antibodies/isolation & purification , Biological Products/isolation & purification , Chemical Fractionation/methods , Filtration/methods , Flocculation , Technology, Pharmaceutical/methods , Animals , CHO Cells , Cell Culture Techniques/methods , Cricetinae , Cricetulus , Humans , Recombinant Proteins/isolation & purification
15.
MAbs ; 5(3): 418-31, 2013.
Article in English | MEDLINE | ID: mdl-23567210

ABSTRACT

Optimization of biophysical properties is a critical success factor for the developability of monoclonal antibodies with potential therapeutic applications. The inter-domain disulfide bond between light chain (Lc) and heavy chain (Hc) in human IgG1 lends structural support for antibody scaffold stability, optimal antigen binding, and normal Fc function. Recently, human IgG1λ has been suggested to exhibit significantly greater susceptibility to reduction of the inter Lc-Hc disulfide bond relative to the same disulfide bond in human IgG1κ. To understand the molecular basis for this observed difference in stability, the sequence and structure of human IgG1λ and human IgG1κ were compared. Based on this Lc comparison, three single mutations were made in the λ Lc proximal to the cysteine residue, which forms a disulfide bond with the Hc. We determined that deletion of S214 (dS) improved resistance of the association between Lc and Hc to thermal stress. In addition, deletion of this terminal serine from the Lc of IgG1λ provided further benefit, including an increase in stability at elevated pH, increased yield from transient transfection, and improved in vitro antibody dependent cell-mediated cytotoxicity (ADCC). These observations support the conclusion that the presence of the terminal serine of the λ Lc creates a weaker inter-chain disulfide bond between the Lc and Hc, leading to slightly reduced stability and a potential compromise in IgG1λ function. Our data from a human IgG1λ provide a basis for further investigation of the effects of deleting terminal serine from λLc on the stability and function of other human IgG1λ antibodies.


Subject(s)
Antibodies, Monoclonal/metabolism , Immunoglobulin G/metabolism , Immunoglobulin Light Chains/metabolism , Amino Acid Sequence , Animals , Antibodies, Monoclonal/genetics , Antibody-Dependent Cell Cytotoxicity/genetics , CHO Cells , Cricetinae , Cricetulus , Cysteine/genetics , HEK293 Cells , Hot Temperature/adverse effects , Humans , Immunoglobulin G/genetics , Immunoglobulin Light Chains/genetics , Mutagenesis, Site-Directed , Mutation/genetics , Protein Binding/genetics , Protein Stability , Serine/genetics
16.
Proteins ; 80(3): 896-912, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22180101

ABSTRACT

Antibody (Ab) humanization is crucial to generate clinically relevant biologics from hybridoma-derived monoclonal antibodies (mAbs). In this study, we integrated antibody structural information from the Protein Data Bank with known back-to-mouse mutational data to build a universal consensus of framework positions (10 heavy and 7 light) critical for the preservation of the functional conformation of the Complimentarity Determining Region of antibodies. On the basis of FR consensus, we describe here a universal combinatorial library suitable for humanizing exogenous antibodies by CDR-grafting. The six CDRs of the murine anti-human EGFR Fab M225 were grafted onto a distinct (low FR sequence similarity to M225) human FR sequence that incorporates at the 17 FR consensus positions the permutations of the naturally observed amino acid diversities. Ten clones were selected from the combinatorial library expressing phage-displayed humanized M225 Fabs. Surprisingly, 2 of the 10 clones were found to bind EGFR with stronger affinity than M225. Cell-based assays demonstrated that the 10 selected clones retained epitope specificity by blocking EGFR phosphorylation and thus hindering cellular proliferation. Our results suggest that there is a universal and structurally rigid near-CDR set of FR positions that cooperatively support the binding conformation of CDRs.


Subject(s)
Antibodies/chemistry , Antibodies/genetics , Complementarity Determining Regions/chemistry , Complementarity Determining Regions/genetics , Computational Biology/methods , Mutation , Amino Acid Sequence , Animals , Antibodies/immunology , Cell Line, Tumor , Complementarity Determining Regions/immunology , ErbB Receptors/immunology , Humans , Hybridomas , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/genetics , Immunoglobulin Fab Fragments/immunology , Mice , Models, Molecular , Molecular Sequence Data , Peptide Library
17.
Curr Drug Targets ; 12(14): 2016-33, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21777192

ABSTRACT

Insulin-like growth factor type-1 receptor (IGF-1R) plays a central role in cell proliferation and survival and is overexpressed in many tumor types. Notably, IGF-1R-mediated signaling confers resistance to diverse cytotoxic, hormonal, and biologic agents, suggesting that therapies targeting IGF-1R may be effective against a broad range of human malignancies. Cixutumumab (IMC-A12; ImClone Systems) is a fully human immunoglobulin G1 (IgG1) monoclonal antibody that specifically inhibits IGF-1R signaling. Binding of cixutumumab to IGF-1R results in receptor internalization and degradation. Because cixutumumab is an IgG1 monoclonal antibody, it may induce additional cytotoxicity via immune effector mechanisms such as antibody-dependent cellular cytotoxicity. In preclinical studies, cixutumumab monotherapy resulted in growth inhibition of multiple experimental cancers. Moreover, cixutumumab safely enhanced the tumor growth inhibitory and cytotoxic effects of a broad range of chemotherapeutics, and modulated the action of agents that target hormone receptors and signal transduction, which may have implications for cancer therapy. Herein, we review published preclinical and clinical data for cixutumumab and provide a comprehensive overview of selected clinical studies.


Subject(s)
Antibodies, Monoclonal/pharmacology , Neoplasms/drug therapy , Receptor, IGF Type 1/antagonists & inhibitors , Animals , Antibodies, Monoclonal/pharmacokinetics , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized , Drug Resistance, Neoplasm , Humans , Insulin-Like Growth Factor I/physiology
18.
Eur J Cancer ; 47(11): 1717-26, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21450456

ABSTRACT

Specific insulin-like growth factor-I receptor (IGF-IR) targeting emerged in recent years as a promising therapeutic strategy in cancer. Endometrial cancer is the most common gynaecological cancer in the Western world. The aim of this study was to evaluate the potential of cixutumumab (IMC-A12, ImClone Systems), a fully human monoclonal antibody against the IGF-IR, to inhibit IGF-I-mediated biological actions and cell signalling events in four endometrial carcinoma-derived cell lines (ECC-1, Ishikawa, USPC-1 and USPC-2). Our results demonstrate that cixutumumab was able to block the IGF-I-induced autophosphorylation of the IGF-IR. In addition, the PI3K and MAPK downstream signalling pathways were also inactivated by cixutumumab in part of the cell lines. Prolonged (24h and 48h) exposures to cixutumumab reduced IGF-IR expression. Furthermore, confocal microscopy of GFP-tagged receptors shows that cixutumumab treatment led to IGF-IR redistribution from the cell membrane to the cytoplasm. Antiapoptotic effects were evaluated by cleavage of caspase 3 and PARP, and mitogenicity and transformation by proliferation and cell cycle assays. Results obtained showed that cixutumumab abrogated the IGF-I-stimulated increase in proliferation rate, and increased caspase-3 and PARP cleavage, two markers of apoptosis. Of importance, cixutumumab had no effect neither on insulin receptor (IR) expression nor on IGF-I activation of IR. In summary, in a cellular model of endometrial cancer cixutumumab was able to inhibit the IGF-I-induced activation of intracellular cascades, apoptosis and proliferation.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Endometrial Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Insulin-Like Growth Factor I/antagonists & inhibitors , Receptor, IGF Type 1/metabolism , Antibodies, Monoclonal, Humanized , Apoptosis , Cell Cycle , Cell Proliferation , Female , Humans , Microscopy, Fluorescence/methods , Phosphorylation , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction
19.
Head Neck ; 33(2): 189-98, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20848439

ABSTRACT

BACKGROUND: Cutaneous squamous cell carcinoma (CSCC) is the second most common nonmelanoma skin cancer. Most of the approximately 250,000 cases occurring annually in the United States are small, nonaggressive, and cured by excision alone. However, a subset of these tumors which are defined by poorly differentiated histology, large tumor size, invasion of adjacent structures, and/or regional metastases can prove resistant to treatment despite adjuvant radiotherapy and can have an increased risk of recurrence and nodal metastasis. Novel therapeutic approaches are necessary to improve the outcomes for patients with aggressive CSCC. METHODS: We analyzed the effect of targeted therapy on the growth and survival of CSCC cell lines using an anti-insulin-like growth factor-I receptor (IGF-IR) antibody, A12, alone or in combination with an anti-epidermal growth factor receptor (EGFR) antibody, cetuximab, both in vitro and in vivo in an athymic nude mouse model of CSCC. RESULTS: Treatment with A12 and cetuximab inhibited the signaling pathways of IGF-IR and EGFR and inhibited proliferation and induced apoptosis of squamous cell carcinoma (SCC) cell lines in vitro. Immunohistochemical staining revealed decreased proliferating cell nuclear antigen (PCNA), microvessel density, and increased apoptosis within the treated tumor xenografts. In addition, the administration of A12, alone or in combination with cetuximab inhibited the growth of tumors by 51% and 92%, respectively, and significantly enhanced survival in the nude mouse model of CSCC (p = .044 and p < .001, respectively). CONCLUSION: These data suggest that dual treatment with monoclonal antibodies to the EGFR and IGF-IR may be therapeutically useful in the treatment of CSCC.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Anthracenes/pharmacology , Antibodies, Monoclonal/pharmacology , Carcinoma, Squamous Cell/drug therapy , ErbB Receptors/antagonists & inhibitors , Neovascularization, Pathologic/prevention & control , Receptor, IGF Type 1/antagonists & inhibitors , Skin Neoplasms/drug therapy , Angiogenesis Inhibitors/therapeutic use , Animals , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized , Carcinoma, Squamous Cell/pathology , Cetuximab , Humans , In Vitro Techniques , Mice , Mice, Nude , Skin Neoplasms/pathology , Treatment Outcome , Tumor Cells, Cultured/drug effects
20.
Hum Antibodies ; 19(4): 89-99, 2010.
Article in English | MEDLINE | ID: mdl-21178280

ABSTRACT

PURPOSE: To evaluate the antibody-dependent cellular cytotoxicity (ADCC) of cetuximab, an anti-epidermal growth factor receptor (EGFR) IgG1 antibody, in vitro. METHODS: Binding to human Fc receptors was measured by ELISA. ADCC against a panel of tumor cell lines was evaluated using peripheral blood mononuclear cells or NK cells as effectors and lactate dehydrogenase release as a marker of cell killing. Cetuximab was compared with two glycan variants of cetuximab and with panitumumab, an anti-EGFR IgG2. RESULTS: Cetuximab bound with high affinity to FcγRI (EC50 = 0.13 nM) and FcγRIIIa (EC50 = 6 nM) and effectively induced ADCC across multiple tumor cell lines. Panitumumab and aglycosylated cetuximab did not bind to FcγRI or FcγRIIIa nor have ADCC activity even at high effector-target cell ratios, even though the EGFR-binding affinity of cetuximab and panitumumab were shown to be comparable (KD = 87 pM and 83 pM, respectively). The extent of cetuximab-elicited ADCC was associated with the level of EGFR expression on tumor cells. CONCLUSIONS: Cetuximab elicits effective ADCC activity against a wide range of tumor cells in vitro. This activity is dependent on antibody glycosylation and IgG1 isotype as well as tumor-cell EGFR expression. These findings suggest that ADCC may contribute to the antitumor activity of cetuximab.


Subject(s)
Antibodies, Monoclonal/immunology , Antibody-Dependent Cell Cytotoxicity , Antineoplastic Agents/immunology , ErbB Receptors/metabolism , Immunoglobulin G/immunology , Antibodies, Monoclonal/metabolism , Antibodies, Monoclonal, Humanized , Antineoplastic Agents/metabolism , Cell Line, Tumor , Cetuximab , Dose-Response Relationship, Drug , Enzyme-Linked Immunosorbent Assay , ErbB Receptors/immunology , Glycosylation , Humans , Immunoglobulin Isotypes , Killer Cells, Natural/immunology , L-Lactate Dehydrogenase/metabolism , Leukocytes, Mononuclear/immunology , Panitumumab
SELECTION OF CITATIONS
SEARCH DETAIL
...