Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Microsc ; 294(2): 146-154, 2024 May.
Article in English | MEDLINE | ID: mdl-38409792

ABSTRACT

To accurately simulate the hydration process of cementitious materials, understanding the growth rate of C-S-H layers around clinker grains is crucial. Nonetheless, the thickness of the hydrate layer shows substantial variation around individual grains, depending on their surrounding. Consequently, it is not feasible to measure hydrate layers manually in a reliable and reproducible manner. To address this challenge, a software has been developed to statistically determine the C-S-H thickness, requiring minimal manual interventions for thresholding and for setting limits like particle size or circularity. This study presents a tool, which automatically identifies suitable clinker grains and and perform statistical measurements of their hydrate layer up to a specimen age of 28 days. The findings reveal a significant increase in the C-S-H layer, starting from 0.45  µ m $\umu {\rm {m}}$ after 1 day and reaching 3.04  µ m $\umu {\rm {m}}$ after 28 days. However, for older specimens, the measurement of the C-S-H layer was not feasible due to limited pore space and clinker grains.

2.
J Microsc ; 286(2): 154-159, 2022 May.
Article in English | MEDLINE | ID: mdl-35150592

ABSTRACT

Image analysis is used in this work to quantify cracks in concrete thin sections via modern image processing. Thin sections were impregnated with a yellow epoxy resin, to increase the contrast between voids and other phases of the concrete. By the means of different steps of pre-processing, machine learning and python scripts, cracks can be quantified in an area of up to 40 cm2 . As a result, the crack area, lengths and widths were estimated automatically within a single workflow. Crack patterns caused by freeze-thaw damages were investigated. To compare the inner degradation of the investigated thin sections, the crack density was used. Cracks in the thin sections were measured manually in two different ways for validation of the automatic determined results. On the one hand, the presented work shows that the width of cracks can be determined pixelwise, thus providing the plot of a width distribution. On the other hand, the automatically measured crack length differs in comparison to the manually measured ones.

3.
J Microsc ; 286(2): 102-107, 2022 05.
Article in English | MEDLINE | ID: mdl-34904720

ABSTRACT

This study demonstrates the application and combination of multiple imaging techniques [light microscopy, micro-X-ray computer tomography (µ-CT), scanning electron microscopy (SEM) and focussed ion beam - nano-tomography (FIB-nT)] to the analysis of the microstructure of hydrated alite across multiple scales. However, by comparing findings with mercury intrusion porosimetry (MIP), it becomes obvious that the imaged 3D volumes and 2D images do not sufficiently overlap at certain scales to allow a continuous quantification of the pore size distribution (PSD). This can be overcome by improving the resolution and increasing the measured volume. Furthermore, results show that the fibrous morphology of calcium-silicate-hydrates (C-S-H) phases is preserved during FIB-nT. This is a requirement for characterisation of nano-scale porosity. Finally, it was proven that the combination of FIB-nT with energy-dispersive X-ray spectroscopy (EDX) data facilitates the phase segmentation of a 11 × 11 × 7.7 µm3 volume of hydrated alite.


Subject(s)
Imaging, Three-Dimensional , Silicates , Calcium Compounds , Imaging, Three-Dimensional/methods , Ions , Microscopy, Electron, Scanning , Silicates/chemistry , Tomography, X-Ray Computed
4.
Molecules ; 26(8)2021 Apr 08.
Article in English | MEDLINE | ID: mdl-33917726

ABSTRACT

This paper studies the influence of hydroxyethyl methyl cellulose (HEMC) on the properties of calcium sulfoaluminate (CSA) cement mortar. In order to explore the applicability of different HEMCs in CSA cement mortars, HEMCs with higher and lower molar substitution (MS)/degree of substitution (DS) and polyacrylamide (PAAm) modification were used. At the same time, two kinds of CSA cements with different contents of ye'elimite were selected. Properties of cement mortar in fresh and hardened states were investigated, including the fluidity, consistency and water-retention rate of fresh mortar and the compressive strength, flexural strength, tensile bond strength and dry shrinkage rate of hardened mortar. The porosity and pore size distribution were also analyzed by mercury intrusion porosimetry (MIP). Results show that HEMCs improve the fresh state properties and tensile bond strength of both types of CSA cement mortars. However, the compressive strength of CSA cement mortars is greatly decreased by the addition of HEMCs, and the flexural strength is decreased slightly. The MIP measurement shows that HEMCs increase the amount of micron-level pores and the porosity. The HEMCs with different MS/DS have different effects on the improvement of tensile bond strength in different CSA cement mortars. PAAm modification can improve the tensile bond strength of HEMC-modified CSA cement mortar.

5.
Materials (Basel) ; 13(8)2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32326474

ABSTRACT

The rheological properties of fresh cement paste are highly influenced by a large number of parameters, among which the most important factors are the applied shear stress, and the shear history, the age of the sample and the temperature. The effects of these parameters on the yield stress (designated as structural limit stress in this work), the viscosity and the structural recovery rate (i.e., the change in dynamic viscosity with time at rest) were studied. In parallel, the changes in ion composition of the carrier liquid, mineral phase content and granulometry were investigated. The results reveal that all investigated rheological parameters exhibit an approximated bi-linear trend with respect to the degree of hydration, with a period of quasi-constant properties until a degree of hydration of approximately 0.07, followed by a non-linear increase. This increase could be attributed to the formation of calcium hydroxide (CH) and calcium-silicate-hydrate (C-S-H) via calorimetry results. With regard to the effect of the shear history of the sample on the rheological properties, the structural limit stress showed a minor dependency on the shear history immediately after the end of shearing, which, however, vanished within the first minute at rest. The same is true for the structural recovery rate. The presented results give detailed insights into the influences of hydration and shear on the rheological properties-especially the thixotropy-of fresh cement pastes.

SELECTION OF CITATIONS
SEARCH DETAIL
...