Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Soc Nephrol ; 32(12): 3081-3098, 2021 12.
Article in English | MEDLINE | ID: mdl-35167487

ABSTRACT

BACKGROUND: IL-17A-producing CD4+ T helper (TH17) cells play a critical role in autoimmune and chronic inflammatory diseases, such as crescentic GN. The proinflammatory effects of IL-17 are mediated by the activation of the IL-17RA/IL-17RC complex. Although the expression of these receptors on epithelial and endothelial cells is well characterized, the IL-17 receptor expression pattern and function on hematopoietic cells, e.g., CD4+ T cell subsets, remains to be elucidated. METHODS: Crescentic GN (nephrotoxic nephritis) was induced in IL-17A, IFNγ, and Foxp3 triple-reporter mice for sorting of renal CD4+ T cell subsets and subsequent single-cell RNA sequencing. Moreover, we generated TH17 cell-specific IL-17RA and IL-17RC gene-deficient mice and studied the functional role of IL-17 signaling in TH17 cells in crescentic GN, imiquimod-induced psoriasis, and in the CD4+CD45RBhigh T cell transfer colitis model. RESULTS: We identified a specific expression of the IL-17 receptor A/C complex on CD4+ TH17 cells. Single-cell RNA sequencing of TH17 cells revealed the activation of the IL-17 receptor signaling pathway in experimental crescentic GN. Disruption of the IL-17RC signaling pathway in CD4+ T cells and, most importantly, specifically in CD4+ TH17 cells, potentiates the IL-17 cytokine response and results in an accelerated course of experimental crescentic GN. Comparable results were observed in experimental models of psoriasis and colitis. CONCLUSIONS: Our findings indicate that IL-17 receptor C signaling has a previously unrecognized function in the regulation of CD4+ TH17 cells and in the control of organ-specific autoimmunity and might provide new insights into the development of more efficient anti-TH17 treatment strategies.


Subject(s)
Glomerulonephritis/etiology , Receptors, Interleukin/physiology , Animals , CD4-Positive T-Lymphocytes/immunology , Glomerulonephritis/immunology , Interleukin-17/biosynthesis , Male , Mice , Mice, Inbred C57BL , Psoriasis/etiology , Receptors, Interleukin-17/physiology , Signal Transduction/physiology , Th17 Cells/immunology
2.
Mol Immunol ; 104: 90-99, 2018 12.
Article in English | MEDLINE | ID: mdl-30448610

ABSTRACT

Immune-mediated glomerular diseases (glomerulonephritis) encompass a heterogeneous collection of diseases that cause inflammation within the glomerulus and other renal compartments with significant morbidity and mortality. In general, CD4+ T cells orchestrate the immune response and play a unique role in autoimmune and chronic inflammatory diseases. In particular, the characterization of a distinct, IL-17 cytokines producing CD4+ T cell subset named TH17 cells has significantly advanced the current understanding of the pathogenic mechanisms of organ-specific immunity. Our group and others have shown that the recruitment of TH17 cells to the inflamed kidney drives renal tissue injury in experimental and possibly human crescentic glomerulonephritis (GN), but much remains to be understood about the biological functions, regulation, and signaling pathways of the TH17/IL-17 axis leading to organ damage. Here we review our current knowledge about the mechanisms and functions of IL-17 signaling in renal autoimmune diseases, with a special focus on experimental and human crescentic GN.


Subject(s)
Autoimmune Diseases/immunology , Glomerulonephritis/immunology , Kidney/immunology , Th17 Cells/immunology , Animals , Autoimmune Diseases/pathology , Glomerulonephritis/pathology , Humans , Interleukin-17 , Organ Specificity/immunology , Th17 Cells/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...