Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Publication year range
1.
Behav Processes ; 118: 1-7, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25981491

ABSTRACT

Experiments were conducted to investigate whether larval palmate newts undertake orientation toward or away from the home shoreline (y-axis orientation) using the geomagnetic field to steer the most direct route, and if they accomplish this task through a light-dependent magnetoreception mechanism similar to that found in anuran tadpoles and adult newts. Larval palmate newts trained and then tested under full-spectrum light showed bimodal magnetic compass orientation that coincided with the magnetic direction of the trained y-axis. In contrast, larvae trained under long-wavelength (≥500nm) light and then tested under full-spectrum light displayed bimodal orientation perpendicular to the trained y-axis direction. These results offer evidence for the use of magnetic compass cues in orienting urodele amphibian larvae, and provide additional support for the light-dependent magnetoreception mechanism since they are in complete agreement with earlier studies showing that the observed 90° shift in the direction of magnetic compass orientation under long-wavelength light (≥500nm) is due to a direct effect of light on the underlying magnetoreception mechanism. This study is the first to provide evidence of a light-dependent magnetic compass in larval urodeles.


Subject(s)
Light , Magnetic Fields , Salamandridae/physiology , Animals , Larva/physiology , Magnetics , Orientation/physiology
2.
Article in English | MEDLINE | ID: mdl-23525820

ABSTRACT

We provide evidence for the use of a magnetic compass for y-axis orientation (i.e., orientation along the shore-deep water axis) by tadpoles of the European common frog (Rana temporaria). Furthermore, our study provides evidence for a wavelength-dependent effect of light on magnetic compass orientation in amphibians. Tadpoles trained and then tested under full-spectrum light displayed magnetic compass orientation that coincided with the trained shore-deep water axes of their training tanks. Conversely, tadpoles trained under long-wavelength (≥500 nm) light and tested under full-spectrum light, and tadpoles trained under full-spectrum light and tested under long-wavelength (≥500 nm) light, exhibited a 90° shift in magnetic compass orientation relative to the trained y-axis direction. Our results are consistent with earlier studies showing that the observed 90° shift in the direction of magnetic compass orientation under long-wavelength (≥500 nm) light is due to a direct effect of light on the underlying magnetoreception mechanism. These findings also show that wavelength-dependent effects of light do not compromise the function of the magnetic compass under a wide range of natural lighting conditions, presumably due to a large asymmetry in the relatively sensitivity of antagonistic short- and long-wavelength inputs to the light-dependent magnetic compass.


Subject(s)
Light , Magnetic Fields , Orientation/physiology , Rana temporaria/physiology , Animals , Time Perception
SELECTION OF CITATIONS
SEARCH DETAIL
...