Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
J Nucl Med ; 65(6): 851-855, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38575188

ABSTRACT

Targeted therapy with epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) has established the precision oncology paradigm in lung cancer. Most patients with EGFR-mutated lung cancer respond but eventually acquire resistance. Methods: Patients exhibiting the EGFR p.T790M resistance biomarker benefit from sequenced targeted therapy with osimertinib. We hypothesized that metabolic response as detected by 18F-FDG PET after short-course osimertinib identifies additional patients susceptible to sequenced therapy. Results: Fourteen patients with EGFR-mutated lung cancer and resistance to first- or second-generation EGFR TKI testing negatively for EGFR p.T790M were enrolled in a phase II study. Five patients (36%) achieved a metabolic 18F-FDG PET response and continued osimertinib. In those, the median duration of treatment was not reached (95% CI, 24 mo to not estimable), median progression-free survival was 18.7 mo (95% CI, 14.6 mo to not estimable), and median overall survival was 41.5 mo. Conclusion: Connecting theranostic osimertinib treatment with early metabolic response assessment by PET enables early identification of patients with unknown mechanisms of TKI resistance who derive dramatic clinical benefit from sequenced osimertinib. This defines a novel paradigm for personalization of targeted therapies in patients with lung cancer dependent on a tractable driver oncogene.


Subject(s)
Drug Resistance, Neoplasm , ErbB Receptors , Lung Neoplasms , Molecular Targeted Therapy , Mutation , Positron-Emission Tomography , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , ErbB Receptors/metabolism , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , Male , Female , Middle Aged , Aged , Aniline Compounds/therapeutic use , Fluorodeoxyglucose F18 , Acrylamides/therapeutic use , Protein Kinase Inhibitors/therapeutic use , Adult , Aged, 80 and over , Indoles , Pyrimidines
2.
Eur J Cancer ; 200: 113540, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38316065

ABSTRACT

PURPOSE: Current guidelines recommend combination chemotherapy for treatment of patients with unfavorable cancer of unknown primary (CUP). Biomarker-guided targeted therapies may offer additional benefit. Data on the feasibility and effectiveness of comprehensive genomic biomarker profiling of CUP in a standard clinical practice setting are limited. METHODS: This analysis included 156 patients with confirmed unfavorable CUP diagnosis according to ESMO guidelines, who were treated at the West German Cancer Center, Essen, Germany, from 2015 to 2021. Clinical parameters and outcome data were retrieved from the electronic hospital information system. Genomic biomarker analyses were performed in formalin-fixed paraffin-embedded tumor tissue whenever possible using the QIAseq Multimodal-Pancancer-Panel. RESULTS: Non-squamous histologies, high tumor burden, and age above 60 years associated with poor survival outcome. Tissue availability restricted comprehensive biomarker analyses to 50 patients (32%), reflecting a major limitation in the real-world setting. In those patients a total of 24 potentially actionable alterations were identified in 17 patients (34% of profiled patients, 11% of total population). The most prevalent biomarkers were high tumor mutational burden and BRCA-mutations. CONCLUSION: In a real-world setting precision medicine for patients with CUP is severely restricted by tissue availability, and a limited spectrum of actionable alterations. Progress for patients may require emphasizing the need for sufficient biopsies, and prospective exploration of blood-based biomarker profiling.


Subject(s)
Neoplasms, Unknown Primary , Humans , Middle Aged , Neoplasms, Unknown Primary/diagnosis , Neoplasms, Unknown Primary/drug therapy , Neoplasms, Unknown Primary/genetics , Prospective Studies , Biomarkers, Tumor/genetics , Precision Medicine , Biopsy , Mutation
3.
Sci Adv ; 9(41): eadg5109, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37831776

ABSTRACT

Pancreatic carcinoma lacks effective therapeutic strategies resulting in poor prognosis. Transcriptional dysregulation due to alterations in KRAS and MYC affects initiation, development, and survival of this tumor type. Using patient-derived xenografts of KRAS- and MYC-driven pancreatic carcinoma, we show that coinhibition of topoisomerase 1 (TOP1) and bromodomain-containing protein 4 (BRD4) synergistically induces tumor regression by targeting promoter pause release. Comparing the nascent transcriptome with the recruitment of elongation and termination factors, we found that coinhibition of TOP1 and BRD4 disrupts recruitment of transcription termination factors. Thus, RNA polymerases transcribe downstream of genes for hundreds of kilobases leading to readthrough transcription. This occurs during replication, perturbing replisome progression and inducing DNA damage. The synergistic effect of TOP1 + BRD4 inhibition is specific to cancer cells leaving normal cells unaffected, highlighting the tumor's vulnerability to transcriptional defects. This preclinical study provides a mechanistic understanding of the benefit of combining TOP1 and BRD4 inhibitors to treat pancreatic carcinomas addicted to oncogenic drivers of transcription and replication.


Subject(s)
Pancreatic Neoplasms , Transcription Factors , Humans , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription, Genetic , DNA Topoisomerases, Type I/metabolism , Pancreatic Neoplasms
4.
Mol Cancer ; 22(1): 52, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36932385

ABSTRACT

BACKGROUND: Inflammation is undoubtedly a hallmark of cancer development. Its maintenance within tumors and the consequences on disease aggressiveness are insufficiently understood. METHODS: Data of 27 tumor entities (about 5000 samples) were downloaded from the TCGA and GEO databases. Multi-omic analyses were performed on these and in-house data to investigate molecular determinants of tumor aggressiveness. Using molecular loss-of-function data, the mechanistic underpinnings of inflammation-induced tumor aggressiveness were addressed. Patient specimens and in vivo disease models were subsequently used to validate findings. RESULTS: There was significant association between somatic copy number alterations (sCNAs) and tumor aggressiveness. SOX2 amplification was the most important feature among novel and known aggressiveness-associated alterations. Mechanistically, SOX2 regulates a group of genes, in particular the AP1 transcription factor FOSL2, to sustain pro-inflammatory signaling pathways, such as IL6-JAK-STAT3, TNFA and IL17. FOSL2 was found overexpressed in tumor sections of specifically aggressive cancers. In consequence, prolonged inflammation induces immunosuppression and activates cytidine deamination and thus DNA damage as evidenced by related mutational signatures in aggressive tumors. The DNA damage affects tumor suppressor genes such as TP53, which is the most mutated gene in aggressive tumors compared to less aggressive ones (38% vs 14%), thereby releasing cell cycle control. These results were confirmed by analyzing tissues from various tumor types and in vivo studies. CONCLUSION: Our data demonstrate the implication of SOX2 in promoting DNA damage and genome instability by sustaining inflammation via FOSL2/IL6, resulting in tumor aggressiveness.


Subject(s)
Interleukin-6 , Neoplasms , Humans , Interleukin-6/genetics , Neoplasms/genetics , Mutation , DNA Copy Number Variations , Inflammation/genetics , Fos-Related Antigen-2/genetics , SOXB1 Transcription Factors/genetics
5.
Cancer Metab ; 10(1): 24, 2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36494842

ABSTRACT

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) lacks effective treatment options beyond chemotherapy. Although molecular subtypes such as classical and QM (quasi-mesenchymal)/basal-like with transcriptome-based distinct signatures have been identified, deduced therapeutic strategies and targets remain elusive. Gene expression data show enrichment of glycolytic genes in the more aggressive and therapy-resistant QM subtype. However, whether the glycolytic transcripts are translated into functional glycolysis that could further be explored for metabolic targeting in QM subtype is still not known. METHODS: We used different patient-derived PDAC model systems (conventional and primary patient-derived cells, patient-derived xenografts (PDX), and patient samples) and performed transcriptional and functional metabolic analysis. These included RNAseq and Illumina HT12 bead array, in vitro Seahorse metabolic flux assays and metabolic drug targeting, and in vivo hyperpolarized [1-13C]pyruvate and [1-13C]lactate magnetic resonance spectroscopy (HP-MRS) in PDAC xenografts. RESULTS: We found that glycolytic metabolic dependencies are not unambiguously functionally exposed in all QM PDACs. Metabolic analysis demonstrated functional metabolic heterogeneity in patient-derived primary cells and less so in conventional cell lines independent of molecular subtype. Importantly, we observed that the glycolytic product lactate is actively imported into the PDAC cells and used in mitochondrial oxidation in both classical and QM PDAC cells, although more actively in the QM cell lines. By using HP-MRS, we were able to noninvasively identify highly glycolytic PDAC xenografts by detecting the last glycolytic enzymatic step and prominent intra-tumoral [1-13C]pyruvate and [1-13C]lactate interconversion in vivo. CONCLUSION: Our study adds functional metabolic phenotyping to transcriptome-based analysis and proposes a functional approach to identify highly glycolytic PDACs as candidates for antimetabolic therapeutic avenues.

6.
Clin Transl Med ; 12(11): e1090, 2022 11.
Article in English | MEDLINE | ID: mdl-36320118

ABSTRACT

BACKGROUND: Plasma-derived tumour-specific cell-free nucleic acids are increasingly utilized as a minimally invasive, real-time biomarker approach in many solid tumours. Circulating tumour DNA of melanoma-specific mutations is currently the best studied liquid biopsy biomarker for melanoma. However, the combination of hotspot genetic alterations covers only around 80% of all melanoma patients. Therefore, alternative approaches are needed to enable the follow-up of all genotypes, including wild-type. METHODS: We identified KPNA2, DTL, BACE2 and DTYMK messenger RNA (mRNA) upregulated in melanoma versus nevi tissues by unsupervised data mining (N = 175 melanoma, N = 20 normal skin, N = 6 benign nevi) and experimentally confirmed differential mRNA expression in vitro (N = 18 melanoma, N = 8 benign nevi). Circulating cell-free RNA (cfRNA) was analysed in 361 plasma samples (collected before and during therapy) from 100 melanoma patients and 18 healthy donors. Absolute cfRNA copies were quantified on droplet digital PCR. RESULTS: KPNA2, DTL, BACE2 and DTYMK cfRNA demonstrated high diagnostic accuracy between melanoma patients' and healthy donors' plasma (AUC > 86%, p < .0001). cfRNA copies increased proportionally with increasing tumour burden independently of demographic variables and even remained elevated in individuals with radiological absence of disease. Re-analysis of single-cell transcriptomes revealed a pan-tumour origin of cfRNA, including endothelial, cancer-associated fibroblasts, macrophages and B cells beyond melanoma cells as cellular sources. Low baseline cfRNA levels were associated with significantly longer progression-free survival (PFS) (KPNA2 HR = .54, p = .0362; DTL HR = .60, p = .0349) and overall survival (KPNA2 HR = .52, p = .0237; BACE2 HR = .55, p = .0419; DTYMK HR = .43, p = .0393). Lastly, we found that cfRNA copies significantly increased during therapy in non-responders compared to responders regardless of therapy and mutational subtypes and that the increase of KPNA2 (HR = 1.73, p = .0441) and DTYMK (HR = 1.82, p = .018) cfRNA during therapy was predictive of shorter PFS. CONCLUSIONS: In sum, we identified a new panel of cfRNAs for a pan-tumour liquid biopsy approach and demonstrated its utility as a prognostic, therapy-monitoring tool independent of the melanoma mutational genotype.


Subject(s)
Cell-Free Nucleic Acids , Melanoma , Nevus , Humans , Biomarkers, Tumor/genetics , Melanoma/genetics , Melanoma/pathology , Cell-Free Nucleic Acids/genetics , Mutation , Genotype , RNA, Messenger
7.
Med Oncol ; 40(1): 13, 2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36352274

ABSTRACT

Female breast cancer (BC) is the leading cause of cancer-related deaths worldwide with higher mortality rates and early onset in developing countries. The molecular basis of early disease onset is still elusive. We recruited 472 female breast cancer from two sub-Saharan African countries (Cameroon and Congo) between 2007 and 2018 and collected clinical data from these patients. To investigate the molecular drivers of early disease onset, we analyzed publicly available breast cancer molecular data from the cancer genome atlas (TCGA) and the gene expression omnibus (GEO) for copy number alteration, mutation and gene expression. Early BC onset (EOBRCA) (diagnosis before 45 years) was higher in African women compared with the TCGA cohort (51.7% vs 15.6%). The tumor grade, mitotic index, HER2 + phenotype, basal-like phenotype and ki67 were higher in EOBRCA for all cohorts. BC risk factors such as parity, breastfeeding early onset of menarche and use of hormonal contraceptives were significantly associated with EOBRCA (p < 0.05). EOBRCA was equally associated with copy number alterations in several oncogenes including CDH6 and FOXM1 and tumor suppressor including TGM3 and DMBT1 as well as higher TP53 mutation rates (OR: 2.93, p < 0.01). There was a significant enrichment of TGFß signaling in EOBRCA with TGM3 deletions, which was associated with high expression of all SMAD transcription factors as well as WNT ligands. The Frizzled receptors FZD1, FZD4 and FZD6 were significantly upregulated in EOBRCA, suggesting activation of non-canonical WNT signaling. Our data, suggest the implication of TGM3 deletion in early breast cancer onset. Further molecular investigations are warranted in African patients.


Subject(s)
Breast Neoplasms , Neoplasms , Female , Humans , Pregnancy , Breast Neoplasms/genetics , Calcium-Binding Proteins , Cohort Studies , DNA-Binding Proteins , Frizzled Receptors , Mutation , Phenotype , Transglutaminases , Tumor Suppressor Proteins , Adult
8.
Nat Commun ; 13(1): 3055, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35650266

ABSTRACT

Melanoma is a highly plastic tumor characterized by dynamic interconversion of different cell identities depending on the biological context. Melanoma cells with high expression of the H3K4 demethylase KDM5B (JARID1B) rest in a slow-cycling, yet reversible persister state. Over time, KDM5Bhigh cells can promote rapid tumor repopulation with equilibrated KDM5B expression heterogeneity. The cellular identity of KDM5Bhigh persister cells has not been studied so far, missing an important cell state-directed treatment opportunity in melanoma. Here, we have established a doxycycline-titratable system for genetic induction of permanent intratumor expression of KDM5B and screened for chemical agents that phenocopy this effect. Transcriptional profiling and cell functional assays confirmed that the dihydropyridine 2-phenoxyethyl 4-(2-fluorophenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexa-hydro-quinoline-3-carboxylate (termed Cpd1) supports high KDM5B expression and directs melanoma cells towards differentiation along the melanocytic lineage and to cell cycle-arrest. The high KDM5B state additionally prevents cell proliferation through negative regulation of cytokinetic abscission. Moreover, treatment with Cpd1 promoted the expression of the melanocyte-specific tyrosinase gene specifically sensitizing melanoma cells for the tyrosinase-processed antifolate prodrug 3-O-(3,4,5-trimethoxybenzoyl)-(-)-epicatechin (TMECG). In summary, our study provides proof-of-concept for a dual hit strategy in melanoma, in which persister state-directed transitioning limits tumor plasticity and primes melanoma cells towards lineage-specific elimination.


Subject(s)
Melanoma , Monophenol Monooxygenase , Cell Line, Tumor , Cell Proliferation/genetics , Humans , Melanocytes/metabolism , Melanoma/drug therapy , Melanoma/genetics , Melanoma/pathology
9.
Thorac Cancer ; 13(15): 2180-2191, 2022 08.
Article in English | MEDLINE | ID: mdl-35708207

ABSTRACT

BACKGROUND: CT scans are used in routine clinical practice for the diagnosis and treatment surveillance of non-small cell lung cancer (NSCLC). However, more sensitive methods are desirable. Liquid biopsy analyses of RNA and DNA can offer more sensitive diagnostic approaches. Cell-free RNA (cfRNA) has been described in several malignancies, but its clinical utility has not previously been explored. METHODS: We evaluated the clinical utility of cfRNA for early detection and surveillance of tumor disease in a proof-of-concept study. Using real-time-droplet digital polymerase chain reaction we characterized a candidate transcript (MORF4L2) in plasma samples from 41 advanced stage, 38 early stage NSCLC and 39 healthy samples. We compared its diagnostic performance with tumor markers and evaluated its utility for disease monitoring. RESULTS: MORF4L2 cfRNA was more abundant in patients than in healthy donors (p < 0.0001). Using the Youden index approach (cutoff value of 537 copies/ml was established) with a sensitivity of 0.73 (95% CI: 0.61-0.82) and a specificity of 0.87 (95% CI: 0.73-0.96). Positive and negative predictive values of 0.92 (95% CI: 0.83-0.95) and 0.59 (95% CI: 0.47-0.83) were achieved. Combination of cfRNA and Cyfra21-1 improved its predictive value from 89.5% to 94.7%. Low baseline MORF4L2 levels were associated with better overall survival (HR:0.25, 95% CI: 0.09-0.7, p = 0.009) and progression-free survival for patients treated with tyrosine kinase inhibitors (p = 0.011) and chemotherapy (p = 0.019). MORF4L2 profile between baseline and follow-up mirrored radiological response and tumor dynamics better than tumor markers. cfRNA transcripts allowed monitoring tumor dynamics in patients without tumor-reported genetic alterations. CONCLUSION: Our data support clinical utility of cfRNA for detection and surveillance of NSCLC. Further studies with larger cohorts are required.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Cell-Free Nucleic Acids , Lung Neoplasms , Antigens, Neoplasm , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Cell-Free Nucleic Acids/genetics , ErbB Receptors/genetics , Humans , Keratin-19 , Lung Neoplasms/diagnosis , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Mutation , Proof of Concept Study , Transcription Factors/genetics
10.
Nat Commun ; 13(1): 156, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013174

ABSTRACT

Immune evasion is indispensable for cancer initiation and progression, although its underlying mechanisms in pancreatic ductal adenocarcinoma (PDAC) are not fully known. Here, we characterize the function of tumor-derived PGRN in promoting immune evasion in primary PDAC. Tumor- but not macrophage-derived PGRN is associated with poor overall survival in PDAC. Multiplex immunohistochemistry shows low MHC class I (MHCI) expression and lack of CD8+ T cell infiltration in PGRN-high tumors. Inhibition of PGRN abrogates autophagy-dependent MHCI degradation and restores MHCI expression on PDAC cells. Antibody-based blockade of PGRN in a PDAC mouse model remarkably decelerates tumor initiation and progression. Notably, tumors expressing LCMV-gp33 as a model antigen are sensitized to gp33-TCR transgenic T cell-mediated cytotoxicity upon PGRN blockade. Overall, our study shows a crucial function of tumor-derived PGRN in regulating immunogenicity of primary PDAC.


Subject(s)
Adenocarcinoma/genetics , Carcinoma, Pancreatic Ductal/genetics , Histocompatibility Antigens Class I/genetics , Pancreatic Neoplasms/genetics , Progranulins/genetics , Tumor Escape/genetics , Adenocarcinoma/immunology , Adenocarcinoma/mortality , Adenocarcinoma/therapy , Animals , Antibodies, Neutralizing/pharmacology , Antigens, Viral/genetics , Antigens, Viral/immunology , Autophagy/drug effects , Autophagy/genetics , Autophagy/immunology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/mortality , Carcinoma, Pancreatic Ductal/therapy , Cell Line, Tumor , Cell Movement/drug effects , Cohort Studies , Cytotoxicity, Immunologic , Gene Expression , Glycoproteins/genetics , Glycoproteins/immunology , Histocompatibility Antigens Class I/immunology , Humans , Lymphocytic choriomeningitis virus/genetics , Lymphocytic choriomeningitis virus/immunology , Mice , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/mortality , Pancreatic Neoplasms/therapy , Peptide Fragments/genetics , Peptide Fragments/immunology , Progranulins/antagonists & inhibitors , Progranulins/immunology , Proteolysis , Survival Analysis , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Viral Proteins/genetics , Viral Proteins/immunology , Xenograft Model Antitumor Assays
11.
Transl Oncol ; 15(1): 101279, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34800919

ABSTRACT

BACKGROUND: Radiology is the current standard for monitoring treatment responses in lung cancer. Limited sensitivity, exposure to ionizing radiations and related sequelae constitute some of its major limitation. Non-invasive and highly sensitive methods for early detection of treatment failures and resistance-associated disease progression would have additional clinical utility. METHODS: We analyzed serially collected plasma and paired tumor samples from lung cancer patients (61 with stage IV, 48 with stages I-III disease) and 61 healthy samples by means of next-generation sequencing, radiological imaging and droplet digital polymerase chain reaction (ddPCR) mutation and methylation assays. RESULTS: A 62% variant concordance between tumor-reported and circulating-free DNA (cfDNA) sequencing was observed between baseline liquid and tissue biopsies in stage IV patients. Interestingly, ctDNA sequencing allowed for the identification of resistance-mediating p.T790M mutations in baseline plasma samples for which no such mutation was observed in the corresponding tissue. Serial circulating tumor DNA (ctDNA) mutation analysis by means of ddPCR revealed a general decrease in ctDNA loads between baseline and first reassessment. Additionally, serial ctDNA analyses only recapitulated computed tomography (CT) -monitored tumor dynamics of some, but not all lesions within the same patient. To complement ctDNA variant analysis we devised a ctDNA methylation assay (methcfDNA) based on methylation-sensitive restriction enzymes. cfDNA methylation showed and area under the curve (AUC) of > 0.90 in early and late stage cases. A decrease in methcfDNA between baseline and first reassessment was reflected by a decrease in CT-derive tumor surface area, irrespective of tumor mutational status. CONCLUSION: Taken together, our data support the use of cfDNA sequencing for unbiased characterization of the molecular tumor architecture, highlights the impact of tumor architectural heterogeneity on ctDNA-based tumor surveillance and the added value of complementary approaches such as cfDNA methylation for early detection and monitoring.

12.
Clin Chem ; 66(12): 1510-1520, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33257977

ABSTRACT

BACKGROUND: We assessed the usefulness of circulating tumor DNA (ctDNA) pre- or post-treatment initiation for outcome prediction and treatment monitoring in metastatic colorectal cancer (mCRC). METHODS: Droplet digital PCR was used to measure absolute mutant V-Ki-ras2 Kirsten rat sarcoma viral oncogene ((mut)KRAS) ctDNA concentrations in 214 healthy controls (plasma and sera) and in 151 tissue-based mutKRAS positive patients with mCRC from the prospective multicenter phase 3 trial AIO KRK0207. Serial mutKRAS ctDNA was analyzed prior to and 2-3 weeks after first-line chemotherapy initiation with fluoropyrimidine, oxaliplatin, and bevacizumab in patients with mCRC and correlated with clinical parameters. RESULTS: mut KRAS ctDNA was detected in 74.8% (113/151) of patients at baseline and in 59.6% (90/151) at follow-up. mutKRAS ctDNA at baseline and follow-up was associated with poor overall survival (OS) (hazard ratio [HR] =1.88, 95% confidence interval [CI] 1.20-2.95; HR = 2.15, 95% CI 1.47-3.15) and progression-free survival (PFS) (HR = 2.53, 95% CI 1.44-4.46; HR = 1.90, 95% CI 1.23-2.95), respectively. mutKRAS ctDNA clearance at follow-up conferred better disease control (P = 0.0075), better OS (log-rank P = 0.0018), and PFS (log-rank P = 0.0018). Measurable positive mutKRAS ctDNA at follow-up was the strongest and most significant independent prognostic factor on OS in multivariable analysis (HR = 2.31, 95% CI 1.40-3.25). CONCLUSIONS: Serial analysis of circulating mutKRAS concentrations in mCRC has prognostic value. Post treatment mutKRAS concentrations 2 weeks after treatment initiation were associated with therapeutic response in multivariable analysis and may be an early response predictor in patients receiving first-line combination chemotherapy. CLINICALTRIALSGOV IDENTIFIER: NCT00973609.


Subject(s)
Circulating Tumor DNA , Colonic Neoplasms , Colorectal Neoplasms , Biomarkers, Tumor , Circulating Tumor DNA/genetics , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Humans , Mutation , Prognosis , Prospective Studies , Proto-Oncogene Proteins p21(ras)/genetics
13.
Asian Pac J Cancer Prev ; 21(8): 2199-2208, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32856845

ABSTRACT

BACKGROUND: Breast cancer (BC) is a leading female cancer worldwide and cause of cancer-related death, especially in developing countries. Genetic predispositions to BC development in African population is poorly studied, and meanwhile the SNP rs17506395 in TP63 gene locus has been associated with the development of breast cancer in Asian women, no investigation has been undertaken within African population. We investigated the impact of this polymorphism in a representative African population. METHODS: We undertook a case-control study including 335 women, of which 111 were breast cancer patients and 224 controls. Using blood-derived germline DNA, PCR-RFLP was used to investigate the polymorphism of TP63 gene at rs17506395 locus. Unconditional logistic regression was used to study the association between the TP63 gene polymorphism and risk of BC development. After stratification into different age and ethno-linguistic groups as well as menopausal status, the Cochran-Mantel-Haenszel test was used to measure significance of the associations. RESULTS: Comparing cases with controls, no significant associations between genotype and disease development was observed. Similarly, when cases were stratified according to menopausal status and ethno-linguistic groups, no significant association was observed between genotype and disease development. However, in women of 40 years and below, TT and TG genotypes were associated with breast cancer development. The minor G allele seems to protective against early breast cancer onset OR of 0.5 (95%CI = 0.26-0.94, p = 0.03). CONCLUSION: Our data revealed an association between rs15706395 and the risk of early breast cancer onset. The GG genotype seems to reduce the risk of early breast cancer. Larger studies are needed to confirm the potential of this SNP as biomarker for breast cancer prognostic.
.


Subject(s)
Biomarkers, Tumor/genetics , Breast Neoplasms/pathology , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Transcription Factors/genetics , Tumor Suppressor Proteins/genetics , Adult , Aged , Breast Neoplasms/epidemiology , Breast Neoplasms/genetics , Cameroon/epidemiology , Case-Control Studies , Female , Follow-Up Studies , Genotype , Humans , Middle Aged , Prognosis , Young Adult
14.
Cell Death Discov ; 6: 12, 2020.
Article in English | MEDLINE | ID: mdl-32194992

ABSTRACT

Oncogenic KRAS mutations are encountered in more than 90% of pancreatic ductal adenocarcinomas. MEK inhibition has failed to procure any clinical benefits in mutant RAS-driven cancers including pancreatic ductal adenocarcinoma (PDAC). To identify potential resistance mechanisms underlying MEK inhibitor (MEKi) resistance in PDAC, we investigated lysosomal drug accumulation in PDAC models both in vitro and in vivo. Mouse PDAC models and human PDAC cell lines as well as human PDAC xenografts treated with the MEK inhibitor trametinib or refametinib led to an enhanced expression of lysosomal markers and enrichment of lysosomal gene sets. A time-dependent, increase in lysosomal content was observed upon MEK inhibition. Strikingly, there was a strong activation of lysosomal biogenesis in cell lines of the classical compared to the basal-like molecular subtype. Increase in lysosomal content was associated with nuclear translocation of the Transcription Factor EB (TFEB) and upregulation of TFEB target genes. siRNA-mediated depletion of TFEB led to a decreased lysosomal biogenesis upon MEK inhibition and potentiated sensitivity. Using LC-MS, we show accumulation of MEKi in the lysosomes of treated cells. Therefore, MEK inhibition triggers lysosomal biogenesis and subsequent drug sequestration. Combined targeting of MEK and lysosomal function may improve sensitivity to MEK inhibition in PDAC.

15.
Cancers (Basel) ; 12(2)2020 Feb 04.
Article in English | MEDLINE | ID: mdl-32033141

ABSTRACT

Early detection of cancer holds high promise for reducing cancer-related mortality. Detection of circulating tumor-specific nucleic acids holds promise, but sensitivity and specificity issues remain with current technology. We studied cell-free RNA (cfRNA) in patients with non-small cell lung cancer (NSCLC; n = 56 stage IV, n = 39 stages I-III), pancreatic cancer (PDAC, n = 20 stage III), malignant melanoma (MM, n = 12 stage III-IV), urothelial bladder cancer (UBC, n = 22 stage II and IV), and 65 healthy controls by means of next generation sequencing (NGS) and real-time droplet digital PCR (RT-ddPCR). We identified 192 overlapping upregulated transcripts in NSCLC and PDAC by NGS, more than 90% of which were noncoding. Previously reported transcripts (e.g., HOTAIRM1) were identified. Plasma cfRNA transcript levels of POU6F2-AS2 discriminated NSCLC from healthy donors (AUC = 0.82 and 0.76 for stages IV and I-III, respectively) and significantly associated (p = 0.017) with the established tumor marker Cyfra 21-1. cfRNA yield and POU6F2-AS transcript abundance discriminated PDAC patients from healthy donors (AUC = 1.0). POU6F2-AS2 transcript was significantly higher in MM (p = 0.044). In summary, our findings support further validation of cfRNA detection by RT-ddPCR as a biomarker for early detection of solid cancers.

16.
Int J Cancer ; 147(1): 189-201, 2020 07 01.
Article in English | MEDLINE | ID: mdl-31846072

ABSTRACT

Binding of transcription factors to mutated DNA sequences is a likely regulator of cancer progression. Noncoding regulatory mutations such as those on the core promoter of the gene encoding human telomerase reverse transcriptase have been shown to affect gene expression in cancer. Using a protein microarray of 667 transcription factor DNA-binding domains and subsequent functional assays, we looked for transcription factors that preferentially bind the mutant hTERT promoter and characterized their downstream effects. One of them, friend leukemia integration 1 (FLI1), which belongs to the E26 transforming-specific family of transcription factors, exhibited particularly strong effects with respect to regulating hTERT expression, while the even better binding ELK3 did not. Depletion of FLI1 decreased expression of the genes for cyclin D1 (CCND1) and E2F transcription factor 2 (E2F2) resulting in a G1/S cell cycle arrest and in consequence a reduction of cell proliferation. FLI1 also affected CMTM7, another gene involved in G1/S transition, although by another process that suggests a balanced regulation of the tumor suppressor gene's activity via opposing regulation processes. FLI1 expression was found upregulated and correlated with an increase in CCND1 expression in pancreatic cancer and brain tumors. In non-neoplastic lung cells, however, FLI1 depletion led to rapid progression through the cell cycle. This coincides with the fact that FLI1 is downregulated in lung tumors. Taken together, our data indicate a cell cycle regulatory hub involving FLI1, hTERT, CCND1 and E2F2 in a tissue- and context-dependent manner.


Subject(s)
Neoplasms/genetics , Neoplasms/metabolism , Proto-Oncogene Protein c-fli-1/genetics , Proto-Oncogene Protein c-fli-1/metabolism , Cell Cycle/physiology , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cyclin D1/biosynthesis , Cyclin D1/genetics , Cyclin D1/metabolism , Disease Progression , E2F2 Transcription Factor/genetics , E2F2 Transcription Factor/metabolism , Gene Expression Regulation, Neoplastic , Humans , Mutation , Neoplasms/pathology , Promoter Regions, Genetic , Protein Array Analysis , Proto-Oncogene Protein c-fli-1/biosynthesis , Telomerase/genetics , Telomerase/metabolism
17.
Sci Rep ; 8(1): 7503, 2018 05 14.
Article in English | MEDLINE | ID: mdl-29760479

ABSTRACT

Using Chlamydia trachomatis (Ct) as a complex model organism, we describe a method to generate bacterial whole-proteome microarrays using cell-free, on-chip protein expression. Expression constructs were generated by two successive PCRs directly from bacterial genomic DNA. Bacterial proteins expressed on microarrays display antigenic epitopes, thereby providing an efficient method for immunoprofiling of patients and allowing de novo identification of disease-related serum antibodies. Through comparison of antibody reactivity patterns, we newly identified antigens recognized by known Ct-seropositive samples, and antigens reacting only with samples from cervical cancer (CxCa) patients. Large-scale validation experiments using high-throughput suspension bead array serology confirmed their significance as markers for either general Ct infection or CxCa, supporting an association of Ct infection with CxCa. In conclusion, we introduce a method for generation of fast and efficient proteome immunoassays which can be easily adapted for other microorganisms in all areas of infection research.


Subject(s)
Antibodies, Bacterial/analysis , Chlamydia Infections/immunology , Chlamydia trachomatis/immunology , Gene Expression Profiling/instrumentation , Proteome/genetics , Uterine Cervical Neoplasms/immunology , Adolescent , Adult , Bacterial Proteins/genetics , Bacterial Proteins/immunology , Cell-Free System , Chlamydia Infections/microbiology , Chlamydia trachomatis/genetics , Female , Gene Expression Regulation, Bacterial , Humans , Immunoassay , Lab-On-A-Chip Devices , Middle Aged , Oligonucleotide Array Sequence Analysis/instrumentation , Proteome/immunology , Uterine Cervical Neoplasms/microbiology , Young Adult
18.
J Infect Public Health ; 11(3): 314-320, 2018.
Article in English | MEDLINE | ID: mdl-28919017

ABSTRACT

Human papilloma virus (HPV) infection is an etiological factor for cervical cancer development and Chlamydia trachomatis (Ct) is considered as a cofactor. Understanding the dynamics of HPV and Ct infection could help to explain the incidence of early onset of cervical cancer (CC) observed in Cameroon. Lower vaginal swabs and sera from sexually active women were analyzed for HPV and Ct infection in association with risk factors. Questionnaires were used to document patients' lifestyle and risk factors. A total of 206 women participated in the study average 28.1±8years (16-50 years). HPV prevalence was 23.3% with subtypes 16 and 18 at respectively 2.9% and 1%. Ct infection totalised 40.8%, of which 23.8% were HPV- Ct co-infections. HPV infection was inversely associated with age (p=0.028). We found a positive association between Ct infection and the number of sex partners (p=0.012) and a negative association with parity (p=0.032). There was no significant association between HPV and Ct infections. High rates of HPV and Ct infections could be an indicator of cervical cancer risk in the near future. There is therefore an urgent need for sensitization as well as implementation of appropriate preventive measures.


Subject(s)
Chlamydia Infections/epidemiology , Chlamydia trachomatis/genetics , Coinfection/epidemiology , Papillomavirus Infections/epidemiology , Uterine Cervical Neoplasms/prevention & control , Vagina/microbiology , Adolescent , Adult , Cameroon/epidemiology , Chlamydia Infections/microbiology , Chlamydia Infections/prevention & control , Chlamydia trachomatis/isolation & purification , Coinfection/microbiology , Coinfection/prevention & control , Coinfection/virology , DNA, Viral , Female , Humans , Incidence , Middle Aged , Papillomavirus Infections/microbiology , Papillomavirus Infections/prevention & control , Papillomavirus Infections/virology , Pregnancy , Prevalence , Risk Factors , Sexual Behavior , Sexual Partners , Surveys and Questionnaires , Uterine Cervical Neoplasms/microbiology , Uterine Cervical Neoplasms/virology , Vagina/virology , Vaginal Smears/methods , Young Adult
19.
Sci Rep ; 7: 39756, 2017 01 03.
Article in English | MEDLINE | ID: mdl-28045055

ABSTRACT

DNA sequencing has advanced to a state that permits studying the genomes of individual patients as nearly a matter of routine. Towards analysing a tissue's protein content in a similar manner, we established a method for the production of microarrays that represent full-length proteins as they are encoded in individual specimens, exhibiting the particular variations, such as mutations or splice variations, present in these samples. From total RNA isolates, each transcript is copied to a specific location on the array by an on-chip polymerase elongation reaction, followed by in situ cell-free transcription and translation. These microarrays permit parallel analyses of variations in protein structure and interaction that are specific to particular samples.


Subject(s)
Genome , Protein Array Analysis/methods , Proteome/isolation & purification , Cell-Free System , DNA/analysis , Diagnostic Tests, Routine , Fluorescent Dyes , Gene Expression , Humans , Oligonucleotide Array Sequence Analysis/methods , Precision Medicine , RNA/isolation & purification
20.
Mol Microbiol ; 100(3): 457-71, 2016 05.
Article in English | MEDLINE | ID: mdl-26784394

ABSTRACT

Control of gene expression at the post-transcriptional level is essential in all organisms, and RNA-binding proteins play critical roles from mRNA synthesis to decay. To fully understand this process, it is necessary to identify the complete set of RNA-binding proteins and the functional consequences of the protein-mRNA interactions. Here, we provide an overview of the proteins that bind to mRNAs and their functions in the pathogenic bloodstream form of Trypanosoma brucei. We describe the production of a small collection of open-reading frames encoding proteins potentially involved in mRNA metabolism. With this ORFeome collection, we used tethering to screen for proteins that play a role in post-transcriptional control. A yeast two-hybrid screen showed that several of the discovered repressors interact with components of the CAF1/NOT1 deadenylation complex. To identify the RNA-binding proteins, we obtained the mRNA-bound proteome. We identified 155 high-confidence candidates, including many not previously annotated as RNA-binding proteins. Twenty seven of these proteins affected reporter expression in the tethering screen. Our study provides novel insights into the potential trypanosome mRNPs composition, architecture and function.


Subject(s)
Proteome/genetics , Protozoan Proteins/genetics , RNA, Messenger/genetics , RNA, Protozoan/genetics , RNA-Binding Proteins/genetics , Trypanosoma brucei brucei/genetics , Gene Expression Profiling , Gene Expression Regulation , Gene Regulatory Networks , High-Throughput Screening Assays , Protozoan Proteins/analysis , Protozoan Proteins/metabolism , RNA-Binding Proteins/analysis , RNA-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...