ABSTRACT
Arctium lappa L. (Asteraceae) is used in folk medicine around the World, and shows several kinds of biological activity, particularly in vitro antitumor activity in different cell lines. This study evaluated the antiproliferative activity of the crude extract, semipurified fractions, and isolated compounds from the leaves of A. lappa, through bioassay-guided testing in Caco-2 cells. The crude extract was obtained with a 50% hydroethanolic extract and then partitioned with hexane, ethyl acetate, and n-butanol. The ethyl-acetate fraction (EAF) showed antiproliferative activity. This fraction was subjected to sequential column chromatography over silica gel to afford onopordopicrin (1), mixtures of 1 with dehydromelitensin-8-(4'-hydroxymethacrylate) (2), a mixture of 2 with dehydromelitensin (3), mixture of 1 with melitensin (4), dehydrovomifoliol (5), and loliolide (6). The compounds were identified by spectroscopic methods (NMR, MS) and comparison with literature data. This is the first description of compounds 2-5 from this species. The compounds tested in Caco-2 cells showed the following CC(50) (µg/mL) values: 1: 19.7 ± 3.4, 1 with 2: 24.6 ± 1.5, 2 with 3: 27 ± 11.7, 1 with 4: 42 ± 13.1, 6 30 ± 6.2; compound 5 showed no activity.
Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Arctium/chemistry , Cell Proliferation/drug effects , Plant Leaves/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Biological Assay , Caco-2 Cells , Drug Screening Assays, Antitumor , Humans , Magnetic Resonance Spectroscopy , Spectrometry, Mass, Electrospray IonizationABSTRACT
Phenyldecane supported growth and lipid accumulation of Rhodococcus opacus PD630 during cultivation under nitrogen-limiting conditions. The results of this study suggested that the hydrocarbon phenyldecane was degraded by monoterminal oxidation, followed by beta-oxidation of the alkyl side-chain to phenylacetic acid, and by an additional degradative route for the oxidation of the latter to intermediates of the central metabolism. alpha-Oxidation of phenyldecanoic acid also occurred to some extent. Phenyldecanoic acid, the monoterminal oxidation product, was also utilized for the biosynthesis of a novel wax ester and novel triacylglycerols. The formation of the wax ester phenyldecylphenyldecanoate probably resulted from the condensation of phenyldecanoic acid and phenyldecanol, which were produced as metabolites during the catabolism of phenyldecane. Two types of triacylglycerol were detected in phenyldecane-grown cells of strain PD630. Triacylglycerols containing only odd- and even-numbered aliphatic fatty acids, as well as triacylglycerols in which one fatty acid was replaced by a phenyldecanoic acid residue, occurred. Other phenyl intermediates, such as phenylacetic acid, phenylpropionic acid, 4-hydroxyphenylpropionic acid, protocatechuate and homogentisic acid, were excreted into the medium during cultivation on phenyldecane. On the basis of the results obtained, pathways for the catabolism and assimilation of phenyldecane by R. opacus PD630 are discussed.