Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-32831529

ABSTRACT

Falling is one of the leading causes of accidental injury and death among elderly adults and construction workers, with costs exceeding US$31 billion each year. Having good balance reduces the likelihood of falling - therefore it is important to determine which possible factors might influence balance. The purpose of this study was to determine if consuming three different types of breakfast altered blood glucose levels in such a way that young healthy individual's balance control was compromised. Balance was then measured while the subjects completed single- and dual-task standing trials with eyes open and closed. Although changing blood glucose did alter quiet standing balance - as measured by the separation distance between the COG and COP, the velocity of the COM, and the total distance traveled by the COG and COP along the anterior-posterior (AP) and medial-lateral (ML) axes - the results were contradictory to what was hypothesized. Subjects with lower blood glucose swayed less than those with higher blood glucose. This could potentially be due to the habitual skipping of breakfast in young adults. Though the changing of blood glucose did influence quiet standing balance of young healthy adults, it was not in a way which increased the risk of falling.

2.
J Biomech Eng ; 136(5): 051003, 2014 May.
Article in English | MEDLINE | ID: mdl-24337255

ABSTRACT

Patient compliance is important when assessing movement, particularly in a free-living environment when patients are asked to don their own accelerometers. Reducing the number of accelerometers could increase patient compliance. The aims of this study were (1) to determine and compare the validity of different accelerometer combinations and placements for a previously developed posture and dynamic movement identification algorithm. Custom-built activity monitors, each containing one tri-axial accelerometer, were placed on the ankles, right thigh, and waist of 12 healthy adults. Subjects performed a protocol in the laboratory including static orientations of standing, sitting, and lying down, and dynamic movements of walking, jogging, transitions between postures, and fidgeting to simulate free-living activity. When only one accelerometer was used, the thigh was found to be the optimal placement to identify both movement and static postures, with a misclassification error of 10%, and demonstrated the greatest accuracy for walking/fidgeting and jogging classification with sensitivities and positive predictive value (PPVs) greater than 93%. When two accelerometers were used, the waist-thigh accelerometers identified movement and static postures with greater accuracy than the thigh-ankle accelerometers (with a misclassification error of 11% compared to 17%). However, the thigh-ankle accelerometers demonstrated the greatest accuracy for walking/ fidgeting and jogging classification with sensitivities and PPVs greater than 93%. Movement can be accurately classified in healthy adults using tri-axial accelerometers placed on one or two of the following sites: waist, thigh, or ankle. Posture and transitions require an accelerometer placed on the waist and an accelerometer placed on the thigh.


Subject(s)
Accelerometry/instrumentation , Movement , Posture , Activities of Daily Living , Adult , Female , Humans , Male , Middle Aged , Patient Compliance , Video Recording , Walking
SELECTION OF CITATIONS
SEARCH DETAIL
...