Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Integr Biol (Camb) ; 13(11): 259-268, 2021 12 30.
Article in English | MEDLINE | ID: mdl-34931665

ABSTRACT

Renal cell carcinoma (RCC) is the third most common genitourinary cancer in the USA. Despite recent advances in the treatment for advanced and metastatic clear cell RCC (ccRCC), the 5-year relative survival rate for the distant disease remains at 12%. Cabozantinib, a tyrosine kinase inhibitor (TKI), which is one of the first-line therapies approved to treat advanced ccRCC as a single agent, is now being investigated as a combination therapy with newer immunotherapeutic agents. However, not much is known about how cabozantinib modulates the immune system. Here, we present a high throughput tri-culture model that incorporates cancer cells, endothelial cells, and patient-derived immune cells to study the effect of immune cells from patients with ccRCC on angiogenesis and cabozantinib resistance. We show that circulating immune cells from patients with ccRCC induce cabozantinib resistance via increased secretion of a set of pro-angiogenic factors. Using multivariate partial least square regression modeling, we identified CD4+ T cell subsets that are correlated with cabozantinib resistance and report the changes in the frequency of these populations in ccRCC patients who are undergoing cabozantinib therapy. These findings provide a potential set of biomarkers that should be further investigated in the current TKI-immunotherapy combination clinical trials to improve personalized treatments for patients with ccRCC.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Anilides/therapeutic use , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/secondary , Endothelial Cells , Female , Humans , Kidney Neoplasms/drug therapy , Kidney Neoplasms/pathology , Male , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Pyridines
2.
EBioMedicine ; 73: 103634, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34673450

ABSTRACT

BACKGROUND: In head and neck cancer, intratumour lymphatic density and tumour lymphangiogenesis have been correlated with lymphatic metastasis, making lymphangiogenesis a promising therapeutic target. However, inter-patient tumour heterogeneity makes it challenging to predict tumour progression and lymph node metastasis. Understanding the lymphangiogenic-promoting factors leading to metastasis (e.g., tumour-derived fibroblasts or TDF), would help develop strategies to improve patient outcomes. METHODS: A microfluidic in vitro model of a tubular lymphatic vessel was co-cultured with primary TDF from head and neck cancer patients to evaluate the effect of TDF on lymphangiogenesis. We assessed the length and number of lymphangiogenic sprouts and vessel permeability via microscopy and image analysis. Finally, we characterised lymphatic vessel conditioning by TDF via RT-qPCR. FINDINGS: Lymphatic vessels were conditioned by the TDF in a patient-specific manner. Specifically, the presence of TDF induced sprouting, altered vessel permeability, and increased the expression of pro-lymphangiogenic genes. Gene expression and functional responses in the fibroblast-conditioned lymphatic vessels were consistent with the patient tumour stage and lymph node status. IGF-1, upregulated among patients, was targeted to validate our personalised medicine approach. Interestingly, IGF-1 blockade was not effective across different patients. INTERPRETATION: The use of lymphatic organotypic models incorporating head and neck TDF provides insight into the pathways leading to lymphangiogenesis in each patient. This model provided a platform to test anti-angiogenic therapeutics and inform of their effectiveness for individual patients. FUNDING: NIH R33CA225281. Wisconsin Head and Neck SPORE NIH P50DE026787. NIH R01AI34749.


Subject(s)
Cancer-Associated Fibroblasts/metabolism , Head and Neck Neoplasms/pathology , Lymphangiogenesis , Neovascularization, Pathologic , Biomarkers , Cancer-Associated Fibroblasts/pathology , Cell Line , Coculture Techniques , Fluorescent Antibody Technique , Head and Neck Neoplasms/metabolism , Humans , Immunohistochemistry , Neovascularization, Pathologic/metabolism , Organoids
3.
Biomaterials ; 270: 120640, 2021 03.
Article in English | MEDLINE | ID: mdl-33592387

ABSTRACT

In cancer metastasis, extravasation refers to the process where tumor cells exit the bloodstream by crossing the endothelium and invade the surrounding tissue. Tumor cells engage in complex crosstalk with other active players such as the endothelium leading to changes in functional behavior that exert pro-extravasation effects. Most in vitro studies to date have only focused on the independent effects of molecular targets on the functional changes of cancer cell extravasation behavior. However, singular targets cannot combat complex interactions involved in tumor cell extravasation that affects multiple cell types and signaling pathways. In this study, we employ an organotypic microfluidic model of human vasculature to investigate the independent and combined role of multiple upregulated secreted factors resulting from cancer-vascular interactions during cancer cell extravasation. The device consists of a tubular endothelial vessel generated from induced pluripotent stem cell derived endothelial cells within a collagen-fibrinogen matrix with breast cancer cells injected through and cultured along the lumen of the vessel. Our system identified cancer-vascular crosstalk, involving invasive breast cancer cells, that results in increased levels of secreted IL-6, IL-8, and MMP-3. Our model also showed that upregulation of these secreted factors correlates with invasive/metastatic potential of breast cancer cells. We also used therapeutic inhibitors to assess the independent and combined role of multiple signaling factors on the overall changes in functional behavior of both the cancer cells and the endothelium that promote extravasation. Taken together, these results demonstrate the potential of our organotypic model in elucidating mechanisms through which cancer-vascular interactions can promote extravasation, and in conducting functional assessment of therapeutic drugs that prevent extravasation in cancer metastasis.


Subject(s)
Breast Neoplasms , Endothelial Cells , Cell Line, Tumor , Humans , Microfluidics , Paracrine Communication
4.
Integr Biol (Camb) ; 12(10): 250-262, 2020 10 16.
Article in English | MEDLINE | ID: mdl-33034643

ABSTRACT

The prostate tumor microenvironment (TME) is strongly immunosuppressive; it is largely driven by alteration in cell phenotypes (i.e. tumor-associated macrophages and exhausted cytotoxic T cells) that result in pro-tumorigenic conditions and tumor growth. A greater understanding into how these altered immune cell phenotypes are developed and could potentially be reversed would provide important insights into improved treatment efficacy for prostate cancer. Here, we report a microfluidic model of the prostate TME that mimics prostate ducts across various stages of prostate cancer progression, with associated stroma and immune cells. Using this platform, we exposed immune cells to a benign prostate TME or a metastatic prostate TME and investigated their metabolism, gene and cytokine expression. Immune cells exposed to the metastatic TME showed metabolic differences with a higher redox ratio indicating a switch to a more glycolytic metabolic profile. These cells also increased expression of pro-tumor response cytokines that have been shown to increase cell migration and angiogenesis such as Interleukin-1 (IL-1) a and Granulocyte-macrophage colony-stimulating factor (GM-CSF). Lastly, we observed decreased TLR, STAT signaling and TRAIL expression, suggesting that phenotypes derived from exposure to the metastatic TME could have an impaired anti-tumor response. This platform could provide a valuable tool for studying immune cell phenotypes in in vitro tumor microenvironments.


Subject(s)
Immune System , Prostatic Neoplasms/immunology , Prostatic Neoplasms/physiopathology , Tumor Microenvironment , Cell Movement , Cell Proliferation , Cells, Cultured , Cytokines/metabolism , Fibroblasts/metabolism , Glycolysis , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Humans , Immunosuppression Therapy , In Vitro Techniques , Leukocytes, Mononuclear/metabolism , Male , Microfluidics , Models, Biological , Neoplasm Invasiveness , Neoplasm Metastasis , Neovascularization, Pathologic , Organ Culture Techniques , Oxidation-Reduction , Phenotype , Prostate/metabolism , STAT Transcription Factors/metabolism , Signal Transduction
5.
Chem Soc Rev ; 49(17): 6402-6442, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32760967

ABSTRACT

Microfluidic lumen-based systems are microscale models that recapitulate the anatomy and physiology of tubular organs. These technologies can mimic human pathophysiology and predict drug response, having profound implications for drug discovery and development. Herein, we review progress in the development of microfluidic lumen-based models from the 2000s to the present. The core of the review discusses models for mimicking blood vessels, the respiratory tract, the gastrointestinal tract, renal tubules, and liver sinusoids, and their application to modeling organ-specific diseases. We also highlight emerging application areas, such as the lymphatic system, and close the review discussing potential future directions.


Subject(s)
Biomimetics , Lab-On-A-Chip Devices , Tissue Engineering/instrumentation , Tissue Engineering/methods , Biocompatible Materials , Biomimetic Materials , Humans
6.
Cancers (Basel) ; 12(5)2020 05 06.
Article in English | MEDLINE | ID: mdl-32384738

ABSTRACT

The extracellular matrix (ECM) composition greatly influences cancer progression, leading to differential invasion, migration, and metastatic potential. In breast cancer, ECM components, such as fibroblasts and ECM proteins, have the potential to alter cancer cell migration. However, the lack of in vitro migration models that can vary ECM composition limits our knowledge of how specific ECM components contribute to cancer progression. Here, a microfluidic model was used to study the effect of 3D heterogeneous ECMs (i.e., fibroblasts and different ECM protein compositions) on the migration distance of a highly invasive human breast cancer cell line, MDA-MB-231. Specifically, we show that in the presence of normal breast fibroblasts, a fibronectin-rich matrix induces more cancer cell migration. Analysis of the ECM revealed the presence of ECM tunnels. Likewise, cancer-stromal crosstalk induced an increase in the secretion of metalloproteinases (MMPs) in co-cultures. When MMPs were inhibited, migration distance decreased in all conditions except for the fibronectin-rich matrix in the co-culture with human mammary fibroblasts (HMFs). This model mimics the in vivo invasion microenvironment, allowing the examination of cancer cell migration in a relevant context. In general, this data demonstrates the capability of the model to pinpoint the contribution of different components of the tumor microenvironment (TME).

7.
Lab Chip ; 20(9): 1586-1600, 2020 05 07.
Article in English | MEDLINE | ID: mdl-32297896

ABSTRACT

Lymphatic vessels (LVs) have been suggested as a preferential conduit for metastatic progression in breast cancer, where a correlation between the occurrence of lymph node metastasis and an increased extracellular matrix (ECM) density has been reported. However, the effect of ECM density on LV function is largely unknown. To better understand these effects, we used a microfluidic device to recreate tubular LVs in a collagen type I matrix. The density of the matrix was tailored to mimic normal breast tissue using a low-density collagen (LD-3 mg mL-1) and cancerous breast tissue using a high-density collagen (HD-6 mg mL-1). We investigated the effect of ECM density on LV morphology, growth, cytokine secretion, and barrier function. LVs cultured in HD matrices showed morphological changes as compared to LVs cultured in a LD matrix. Specifically, LVs cultured in HD matrices had a 3-fold higher secretion of the pro-inflammatory cytokine, IL-6, and a leakier phenotype, suggesting LVs acquired characteristics of activated vessels. Interestingly, LV leakiness was mitigated by blocking the IL-6 receptor on the lymphatic ECs, maintaining endothelium permeability at similar levels of LV cultured in a LD matrix. To recreate a more in vivo microenvironment, we incorporated metastatic breast cancer cells (MDA-MB-231) into the LD and HD matrices. For HD matrices, co-culture with MDA-MB-231 cells exacerbated vessel leakiness and secretion of IL-6. In summary, our data suggest that (1) ECM density is an important microenvironmental cue that affects LV function in the breast tumor microenvironment (TME), (2) dense matrices condition LVs towards an activated phenotype and (3) blockade of IL-6 signaling may be a potential therapeutic target to mitigate LV dysfunction. Overall, modeling LVs and their interactions with the TME can help identify novel therapeutic targets and, in turn, advance therapeutic discovery.


Subject(s)
Breast Neoplasms/metabolism , Extracellular Matrix/metabolism , Lab-On-A-Chip Devices , Lymphatic Vessels/metabolism , Breast Neoplasms/pathology , Cells, Cultured , Extracellular Matrix/pathology , Female , Humans , Lymphatic Vessels/pathology , Tumor Microenvironment
8.
Biomaterials ; 214: 119225, 2019 09.
Article in English | MEDLINE | ID: mdl-31154151

ABSTRACT

The lymphatic system is an active player in the pathogenesis of several human diseases, including lymphedema and cancer. Relevant models are needed to advance our understanding of lymphatic biology in disease progression to improve therapy and patient outcomes. Currently, there are few 3D in vitro lymphatic models that can recapitulate the physiological structure, function, and interactions of lymphatic vessels in normal and diseased microenvironments. Here, we developed a 3D microscale lymphatic vessel (µLYMPH) system for generating human lymphatic vessels with physiological tubular structure and function. Consistent with characteristics of lymphatic vessels in vivo, the endothelium of cultured vessels was leaky with an average permeability of 1.38 × 10-5 ± 0.29 × 10-5 cm/s as compared to 0.68 × 10-5 ± 0.13 × 10-5 cm/s for blood vessels. This leakiness also resulted in higher uptake of solute by the lymphatic vessels under interstitial flow, demonstrating recapitulation of their natural draining function. The vessels secreted appropriate growth factors and inflammatory mediators. Our system identified the follistatin/activin axis as a novel pathway in lymphatic vessel maintenance and inflammation. Moreover, the µLYMPH system provided a platform for examining crosstalk between lymphatic vessels and tumor microenvironmental components, such as breast cancer-associated fibroblasts (CAFs). In co-culture with CAFs, vessel barrier function was significantly impaired by CAF-secreted IL-6, a possible pro-metastatic mechanism of lymphatic metastasis. Targeted blocking of the IL-6/IL-6R signaling pathway with an IL-6 neutralizing antibody fully rescued the vessels, demonstrating the potential of our system for screening therapeutic targets. These results collectively demonstrate the µLYMPH system as a powerful model for advancing lymphatic biology in health and disease.


Subject(s)
Lymphatic Vessels/physiology , Organ Culture Techniques/instrumentation , Cell Line , Cellular Microenvironment , Endothelial Cells/cytology , Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells , Humans , Lymphangiogenesis , Lymphatic Vessels/cytology , Permeability , Signal Transduction
9.
EBioMedicine ; 37: 144-157, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30482722

ABSTRACT

BACKGROUND: Ductal carcinoma in situ (DCIS) is the earliest stage of breast cancer. During DCIS, tumor cells remain inside the mammary duct, growing under a microenvironment characterized by hypoxia, nutrient starvation, and waste product accumulation; this harsh microenvironment promotes genomic instability and eventually cell invasion. However, there is a lack of biomarkers to predict what patients will transition to a more invasive tumor or how DCIS cells manage to survive in this harsh microenvironment. METHODS: In this work, we have developed a microfluidic model that recapitulates the DCIS microenvironment. In the microdevice, a DCIS model cell line was grown inside a luminal mammary duct model, embedded in a 3D hydrogel with mammary fibroblasts. Cell behavior was monitored by confocal microscopy and optical metabolic imaging. Additionally, metabolite profile was studied by NMR whereas gene expression was analyzed by RT-qPCR. FINDINGS: DCIS cell metabolism led to hypoxia and nutrient starvation; revealing an altered metabolism focused on glycolysis and other hypoxia-associated pathways. In response to this starvation and hypoxia, DCIS cells modified the expression of multiple genes, and a gradient of different metabolic phenotypes was observed across the mammary duct model. These genetic changes observed in the model were in good agreement with patient genomic profiles; identifying multiple compounds targeting the affected pathways. In this context, the hypoxia-activated prodrug tirapazamine selectively destroyed hypoxic DCIS cells. INTERPRETATION: The results showed the capacity of the microfluidic model to mimic the DCIS structure, identifying multiple cellular adaptations to endure the hypoxia and nutrient starvation generated within the mammary duct. These findings may suggest new potential therapeutic directions to treat DCIS. In summary, given the lack of in vitro models to study DCIS, this microfluidic device holds great potential to find new DCIS predictors and therapies and translate them to the clinic.


Subject(s)
Breast Neoplasms , Gene Expression Regulation, Neoplastic , Genomic Instability , Models, Biological , Tumor Microenvironment , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Female , Humans , Hydrogels/chemistry , Microfluidic Analytical Techniques , Neoplasm Invasiveness
SELECTION OF CITATIONS
SEARCH DETAIL
...