Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(29): 34818-34828, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37433087

ABSTRACT

Bipolar supercapacitors that can store many fold higher capacitance in negative voltage compared to positive voltage are of great importance if they can be engineered for practical applications. The electrode material encompassing high surface area, better electrochemical stability, high conductivity, moderate distribution of pore size, and their interaction with suitable electrolytes is imperative to enable bipolar supercapacitor performance. Apropos of the aforementioned aspects, the intent of this work is to ascertain the effect of ionic properties of different electrolytes on the electrochemical properties and performance of a porous CNT-MoS2 hybrid microstructure toward bipolar supercapacitor applications. The electrochemical assessment reveals that the CNT-MoS2 hybrid electrode exhibited a two- to threefold higher areal capacitance value of 122.3 mF cm-2 at 100 µA cm-2 in 1 M aqueous Na2SO4 and 42.13 mF cm-2 at 0.30 mA cm-2 in PVA-Na2SO4 gel electrolyte in the negative potential window in comparison to the positive potential window. The CNT-MoS2 hybrid demonstrates a splendid Coulombic efficiency of ∼102.5% and outstanding stability with capacitance retention showing a change from 100% to ∼180% over 7000 repeated charging-discharging cycles.

SELECTION OF CITATIONS
SEARCH DETAIL
...