Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Chem ; 147: 107389, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677011

ABSTRACT

The leaves of Odontonema strictum, a tropical plant used for its antihypertensive properties, are rich in nutrients and biologically active phytochemicals, such as ß-sitosterol, stigmasterol, umuravumbolide, deacetylumuravumbolide, dideacetylboronolide, deacetylboronolide, verbascoside, and isoverbascoside. In addition, its roots are rich in ß-sitosterol, stigmasterol, and the iridoid glycoside ß-O-methyl-unedoside. Ingestion of the roots was reported to have a sedative effect in a dog was previously reported on a dog eating the roots of this plant. In the present study, we report for the first time the cell proliferation- and neurite outgrowth-promoting effects in PC12 neuronal cells of the isolated organic compounds and crude extracts from O. strictum. Pituitary adenylate cyclase-activating peptide (PACAP) and quercetin were used as positive controls. At the concentration of 0.2 µg/mL, ß-sitosterol was more potent than quercetin and displayed the same activity (>45 µm/cell) as PACAP (100 nM). At a low concentration (0.04 µg/mL), verbascoside and isoverbascoside showed the strongest neurite outgrowth-promoting effect (neurite length of 30 to 35 µm/cell). Our results indicate that phytomedicines made from O. strictum may be useful in preventing neurodegenerative diseases.


Subject(s)
Biological Products , Cell Proliferation , Neuronal Outgrowth , Animals , PC12 Cells , Neuronal Outgrowth/drug effects , Rats , Biological Products/pharmacology , Biological Products/chemistry , Biological Products/isolation & purification , Cell Proliferation/drug effects , Molecular Structure , Dose-Response Relationship, Drug , Structure-Activity Relationship , Neurons/drug effects , Neurons/cytology , Plant Leaves/chemistry
2.
J Oleo Sci ; 72(5): 571-576, 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37045751

ABSTRACT

An ethyl acetate leaf extract from Odontonema strictum has been reported to have potent antihypertensive activity by inhibiting coronary artery contractions in porcine heart. However, the phytochemistry of the active fraction was unknown. Here we report, for the first time, the isolation and characterization of four known α-pyrones from the active fraction. The antioxidant activity of umuravumbolide (IC50 = 55.7±0.027 µg/mL), deacetylumuravumbolide (IC50 = 0.24±0.0002 µg/mL), dideacetylboronolide (IC50 = 149±0 µg/mL) and deacetylboronolide (IC50 = 24±0 µg/mL) was evaluated in vitro against 2,2-diphenyl-1-picrylhydrazyl radicals. Ascorbic acid was used as a positive control (IC50 = 1.73×10-3±0.3 µg/mL). The presence of 6-substituted 5,6-dihydro-α-pyrones and phenylpropanoid glucosides in the active fraction was suggested to be responsible for the antihypertensive activity. This is the first time that the antioxidant potential of these phytochemicals has been evaluated, and the results indicate that O. strictum has potential as an herbal medicine. Thus, further chemotaxonomic studies among the genera Odontonema and Tetradenia, a known source of α-pyrones, are recommended.


Subject(s)
Odontoma , Odontoma/chemistry , Pyrones/chemistry , Pyrones/pharmacology , Plant Leaves/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology
3.
ChemistrySelect ; 7(30): e202202097, 2022 Aug 12.
Article in English | MEDLINE | ID: mdl-36245851

ABSTRACT

The unprecedented novel coronavirus disease 2019 (COVID-19) pandemic is a threat to global health and the economy. Since the outbreak of COVID-19, great effort has been made to reposition existing drugs to shorten development timelines, in addition to vaccine development and drug discovery campaigns. Umifenovir is a broad-spectrum antiviral agent used to treat influenza in China and Russia and is currently undergoing clinical trials for the treatment of COVID-19. In this article, the synthesis of umifenovir analogues and their biological evaluation are reported. The inhibitory activities of analogues against the binding of the spike glycoprotein (S-protein) of the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) to the ACE2 receptor, which is a possible mode of action for umifenovir to inhibit viral infection, were investigated.

4.
Molecules ; 27(10)2022 May 17.
Article in English | MEDLINE | ID: mdl-35630683

ABSTRACT

The aqueous extract of the leaves of Odontonema strictum (OSM) is used in folk medicine for its antihypertensive properties, and it contains a wide range of secondary metabolites, mostly polyphenols such as verbascoside and isoverbascoside, which could play a major role in the preparation of silver nanoparticles. In this study, we aimed to prepare AgNPs for the first time using the OSM leaf extract (OSM-AgNPs) to investigate their free radical-scavenging potency against 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydrogen peroxide (H2O2). Dynamic light scattering (DLS), UV/Vis, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), and X-ray photoelectron spectroscopy (XPS) were used to characterize the OSM-AgNPs. With a size around 100 nm and a ζ-potential of -41.1 mV, OSM-AgNPs showed a good stability and a better colloidal property due to electrostatic repulsion and the dispersity. The strong absorption peak at 3 keV in the EDX spectra indicated that silver was the major constituent. Additionally, the existence of silver atoms was confirmed by the Ag 3d5/2 peak around 367 eV in the XPS spectra. IC50 values of 116 µg/mL and 4.4 µg/mL were obtained for the scavenging activities of DPPH and H2O2, respectively. The synthetic OSM-AgNPs can be further exploited as potential antioxidant agents.


Subject(s)
Acanthaceae , Metal Nanoparticles , Antioxidants/chemistry , Antioxidants/pharmacology , Hydrogen Peroxide , Metal Nanoparticles/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Silver/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...