Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Elife ; 122023 07 20.
Article in English | MEDLINE | ID: mdl-37470241

ABSTRACT

Expression of activated Ras, RasV12, provides Drosophila cultured cells with a proliferation and survival advantage that simplifies the generation of continuous cell lines. Here, we used lineage-restricted RasV12 expression to generate continuous cell lines of muscle, glial, and epithelial cell type. Additionally, cell lines with neuronal and hemocyte characteristics were isolated by cloning from cell cultures established with broad RasV12 expression. Differentiation with the hormone ecdysone caused maturation of cells from mesoderm lines into active muscle tissue and enhanced dendritic features in neuronal-like lines. Transcriptome analysis showed expression of key cell-type-specific genes and the expected alignment with single-cell sequencing and in situ data. Overall, the technique has produced in vitro cell models with characteristics of glia, epithelium, muscle, nerve, and hemocyte. The cells and associated data are available from the Drosophila Genomic Resource Center.


Fruit flies are widely used in the life and biomedical sciences as models of animal biology. They are small in size and easy to care for in a laboratory, making them ideal for studying how the body works. There are, however, some experiments that are difficult to perform on whole flies and it would be advantageous to use populations of fruit fly cells grown in the laboratory ­ known as cell cultures ­ instead. Unlike studies in humans and other mammals, which ­ for ethical and practical reasons ­heavily rely on cell cultures, few studies have used fruit fly cell cultures. Recent work has shown that having an always active version of a gene called Ras in fruit fly cells helps the cells to survive and grow in cultures, making it simpler to generate new fruit fly cell lines compared with traditional methods. However, the methods used to express activated Ras result in cell lines that can be a mixture of many different types of cell, which limits how useful they are for research. Here, Coleman-Gosser, Hu, Raghuvanshi, Stitzinger et al. aimed to use Ras to generate a collection of cell lines from specific types of fruit fly cells in the muscle, nervous system, blood and other parts of the body. The experiments show that selectively expressing activated Ras in an individual type of cell enables them to outcompete other cells in culture to generate a cell line consisting only of the cell type of interest. The new cell lines offer models for experiments that more closely reflect their counterparts in flies. For example, the team were able to recapitulate how fly muscles develop by treating one of the cell lines with a hormone called ecdysone, which triggered the cells to mature into active muscle cells that spontaneously contract and relax. In the future, the new cell lines could be used for various experiments including high throughput genetic screening or testing the effects of new drugs and other compounds. The method used in this work may also be used by other researchers to generate more fruit fly cell lines.


Subject(s)
Drosophila , Hemocytes , Animals , Drosophila/genetics , Neuroglia/metabolism , Cell Line , Muscles , Drosophila melanogaster/genetics
2.
Front Cell Dev Biol ; 10: 909212, 2022.
Article in English | MEDLINE | ID: mdl-35784477

ABSTRACT

Differential processing is a hallmark of clustered microRNAs (miRNAs) and the role of position and order of miRNAs in a cluster together with the contribution of stem-base and terminal loops has not been explored extensively within the context of a polycistronic transcript. To elucidate the structural attributes of a polycistronic transcript that contribute towards the differences in efficiencies of processing of the co-transcribed miRNAs, we constructed a series of chimeric variants of Drosophila let-7-Complex that encodes three evolutionary conserved and differentially expressed miRNAs (miR-100, let-7 and miR-125) and examined the expression and biological activity of the encoded miRNAs. The kinetic effects of Drosha and Dicer processing on the chimeric precursors were examined by in vitro processing assays. Our results highlight the importance of stem-base and terminal loop sequences in differential expression of polycistronic miRNAs and provide evidence that processing of a particular miRNA in a polycistronic transcript is in part determined by the kinetics of processing of adjacent miRNAs in the same cluster. Overall, this analysis provides specific guidelines for achieving differential expression of a particular miRNA in a cluster by structurally induced changes in primary miRNA (pri-miRNA) sequences.

3.
G3 (Bethesda) ; 12(2)2022 02 04.
Article in English | MEDLINE | ID: mdl-34849844

ABSTRACT

Drosophila cell lines are used by researchers to investigate various cell biological phenomena. It is crucial to exercise good cell culture practice. Poor handling can lead to both inter- and intra-species cross-contamination. Prolonged culturing can lead to introduction of large- and small-scale genomic changes. These factors, therefore, make it imperative that methods to authenticate Drosophila cell lines are developed to ensure reproducibility. Mammalian cell line authentication is reliant on short tandem repeat (STR) profiling; however, the relatively low STR mutation rate in Drosophila melanogaster at the individual level is likely to preclude the value of this technique. In contrast, transposable elements (TEs) are highly polymorphic among individual flies and abundant in Drosophila cell lines. Therefore, we investigated the utility of TE insertions as markers to discriminate Drosophila cell lines derived from the same or different donor genotypes, divergent sub-lines of the same cell line, and from other insect cell lines. We developed a PCR-based next-generation sequencing protocol to cluster cell lines based on the genome-wide distribution of a limited number of diagnostic TE families. We determined the distribution of five TE families in S2R+, S2-DRSC, S2-DGRC, Kc167, ML-DmBG3-c2, mbn2, CME W1 Cl.8+, and ovarian somatic sheath Drosophila cell lines. Two independent downstream analyses of the next-generation sequencing data yielded similar clustering of these cell lines. Double-blind testing of the protocol reliably identified various Drosophila cell lines. In addition, our data indicate minimal changes with respect to the genome-wide distribution of these five TE families when cells are passaged for at least 50 times. The protocol developed can accurately identify and distinguish the numerous Drosophila cell lines available to the research community, thereby aiding reproducible Drosophila cell culture research.


Subject(s)
Cell Line , DNA Transposable Elements , Drosophila , Animals , DNA Transposable Elements/genetics , Drosophila/genetics , Drosophila melanogaster/genetics , Genome, Insect , Reproducibility of Results
4.
Genetics ; 219(2)2021 10 02.
Article in English | MEDLINE | ID: mdl-34849875

ABSTRACT

Cell culture systems allow key insights into biological mechanisms yet suffer from irreproducible outcomes in part because of cross-contamination or mislabeling of cell lines. Cell line misidentification can be mitigated by the use of genotyping protocols, which have been developed for human cell lines but are lacking for many important model species. Here, we leverage the classical observation that transposable elements (TEs) proliferate in cultured Drosophila cells to demonstrate that genome-wide TE insertion profiles can reveal the identity and provenance of Drosophila cell lines. We identify multiple cases where TE profiles clarify the origin of Drosophila cell lines (Sg4, mbn2, and OSS_E) relative to published reports, and also provide evidence that insertions from only a subset of long-terminal repeat retrotransposon families are necessary to mark Drosophila cell line identity. We also develop a new bioinformatics approach to detect TE insertions and estimate intra-sample allele frequencies in legacy whole-genome sequencing data (called ngs_te_mapper2), which revealed loss of heterozygosity as a mechanism shaping the unique TE profiles that identify Drosophila cell lines. Our work contributes to the general understanding of the forces impacting metazoan genomes as they evolve in cell culture and paves the way for high-throughput protocols that use TE insertions to authenticate cell lines in Drosophila and other organisms.


Subject(s)
Cell Line Authentication/methods , DNA Transposable Elements , Drosophila melanogaster/genetics , Loss of Heterozygosity , Animals , Cell Line , Cells, Cultured , Drosophila melanogaster/cytology , Whole Genome Sequencing/methods
5.
G3 (Bethesda) ; 11(8)2021 08 07.
Article in English | MEDLINE | ID: mdl-33963853

ABSTRACT

The generation of Drosophila stable cell lines has become invaluable for complementing in vivo experiments and as tools for genetic screens. Recent advances utilizing attP/PhiC31 integrase system has permitted the creation of Drosophila cells in which recombination mediated cassette exchange (RMCE) can be utilized to generate stably integrated transgenic cell lines that contain a single copy of the transgene at the desired locus. Current techniques, besides being laborious and introducing extraneous elements, are limited to a handful of cell lines of embryonic origin. Nonetheless, with well over 100 Drosophila cell lines available, including an ever-increasing number CRISPR/Cas9 modified cell lines, a more universal methodology is needed to generate a stably integrated transgenic line from any one of the available Drosophila melanogaster cell lines. Here, we describe a toolkit and procedure that combines CRISPR/Cas9 and theaaa PhiC31 integrase system. We have generated and isolated single cell clones containing an Actin5C::dsRed cassette flanked by attP sites into the genome of Kc167 and S2R+ cell lines that mimic the in vivo attP sites located at 25C6 and 99F8 of the Drosophila genome. Furthermore, we tested the functionality of the attP docking sites utilizing two independent GFP expressing constructs flanked by attB sites that permit RMCE and therefore the insertion of any DNA of interest. Lastly, to demonstrate the universality of our methodology and existing constructs, we have successfully integrated the Actin5C::dsRed cassette flanked by attP sites into two different CNS cell lines, ML-DmBG2-c2 and ML-DmBG3-c2. Overall, the reagents and methodology reported here permit the efficient generation of stable transgenic cassettes with minimal change in the cellular genomes in existing D. melanogaster cell lines.


Subject(s)
Drosophila melanogaster , Drosophila , Animals , CRISPR-Cas Systems , Cell Line , Drosophila/genetics , Drosophila/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Integrases/genetics , Integrases/metabolism
6.
MicroPubl Biol ; 20212021 Jan 29.
Article in English | MEDLINE | ID: mdl-33537561

ABSTRACT

We have previously adapted a select number of Drosophila cell lines to grow in serum-free media supplemented with fly extract. This condition is arguably more representative of a native growth environment. Here, we validated that the fly extract adapted line, S2R+ (FEx 2.5%) is amenable to RNAi. RNAi against Rho1 in both S2R+ and S2R+ (FEx 2.5%) produced phenotypes similar to ones previously described in Drosophila S2 cells.

7.
G3 (Bethesda) ; 10(12): 4541-4551, 2020 12 03.
Article in English | MEDLINE | ID: mdl-33028628

ABSTRACT

Successful Drosophila cell culture relies on media containing xenogenic components such as fetal bovine serum to support continuous cell proliferation. Here, we report a serum-free culture condition that supports the growth and proliferation of Drosophila S2R+ and Kc167 cell lines. Importantly, the gradual adaptation of S2R+ and Kc167 cells to a media lacking serum was supported by supplementing the media with adult Drosophila soluble extract, commonly known as fly extract. The utility of these adapted cells lines is largely unchanged. The adapted cells exhibited robust proliferative capacity and a transfection efficiency that was comparable to control cells cultured in serum-containing media. Transcriptomic data indicated that the S2R+ cells cultured with fly extract retain their hemocyte-specific transcriptome profile, and there were no global changes in the transcriptional output of cell signaling pathways. Our metabolome studies indicate that there were very limited metabolic changes. In fact, the cells were likely experiencing less oxidative stress when cultured in the serum-free media supplemented with fly extract. Overall, the Drosophila cell culture conditions reported here consequently provide researchers with an alternative and physiologically relevant resource to address cell biological research questions.


Subject(s)
Cell Culture Techniques , Drosophila melanogaster , Animals , Cell Line , Culture Media , Culture Media, Serum-Free , Drosophila melanogaster/genetics
8.
Development ; 146(17)2019 09 12.
Article in English | MEDLINE | ID: mdl-31399469

ABSTRACT

The dramatic growth that occurs during Drosophila larval development requires rapid conversion of nutrients into biomass. Many larval tissues respond to these biosynthetic demands by increasing carbohydrate metabolism and lactate dehydrogenase (LDH) activity. The resulting metabolic program is ideally suited for synthesis of macromolecules and mimics the manner by which cancer cells rely on aerobic glycolysis. To explore the potential role of Drosophila LDH in promoting biosynthesis, we examined how Ldh mutations influence larval development. Our studies unexpectedly found that Ldh mutants grow at a normal rate, indicating that LDH is dispensable for larval biomass production. However, subsequent metabolomic analyses suggested that Ldh mutants compensate for the inability to produce lactate by generating excess glycerol-3-phosphate (G3P), the production of which also influences larval redox balance. Consistent with this possibility, larvae lacking both LDH and G3P dehydrogenase (GPDH1) exhibit growth defects, synthetic lethality and decreased glycolytic flux. Considering that human cells also generate G3P upon inhibition of lactate dehydrogenase A (LDHA), our findings hint at a conserved mechanism in which the coordinate regulation of lactate and G3P synthesis imparts metabolic robustness to growing animal tissues.


Subject(s)
Drosophila melanogaster/physiology , Glycerolphosphate Dehydrogenase/metabolism , L-Lactate Dehydrogenase/metabolism , Larva/growth & development , Larva/metabolism , Sugars/metabolism , Adenosine Triphosphate/metabolism , Animals , Animals, Genetically Modified , Female , Glycerolphosphate Dehydrogenase/genetics , Glycolysis/genetics , Homeostasis/genetics , L-Lactate Dehydrogenase/genetics , Lactic Acid/biosynthesis , Male , Mutation , NAD/metabolism , Oxidation-Reduction
9.
J Vis Exp ; (146)2019 04 16.
Article in English | MEDLINE | ID: mdl-31058891

ABSTRACT

There are currently over 160 distinct Drosophila cell lines distributed by the Drosophila Genomics Resource Center (DGRC). With genome engineering, the number of novel cell lines is expected to increase. The DGRC aims to familiarize researchers with using Drosophila cell lines as an experimental tool to complement and drive their research agenda. Procedures for working with a variety of Drosophila cell lines with distinct characteristics are provided, including protocols for thawing, culturing, and cryopreserving cell lines. Importantly, this publication demonstrates the best practices required to work with Drosophila cell lines to minimize the risk of contaminations from adventitious microorganisms or from other cell lines. Researchers who become familiar with these procedures will be able to delve into the many applications that use Drosophila cultured cells including biochemistry, cell biology and functional genomics.


Subject(s)
Cell Culture Techniques/methods , Cryopreservation/methods , Drosophila melanogaster/cytology , Animals , Automation , Cell Count , Cell Line , Cells, Cultured , Culture Media , Drosophila melanogaster/genetics , Genotype
10.
Wiley Interdiscip Rev Dev Biol ; 8(3): e339, 2019 05.
Article in English | MEDLINE | ID: mdl-30561900

ABSTRACT

The use of Drosophila cell cultures has positively impacted both fundamental and biomedical research. The most widely used cell lines: Schneider, Kc, the CNS and imaginal disc lines continue to be the choice for many applications. Drosophila cell lines provide a homogenous source of cells suitable for biochemical experimentations, transcriptomics, functional genomics, and biomedical applications. They are amenable to RNA interference and serve as a platform for high-throughput screens to identify relevant candidate genes or drugs for any biological process. Currently, CRISPR-based functional genomics are also being developed for Drosophila cell lines. Even though many uniquely derived cell lines exist, cell genetic techniques such the transgenic UAS-GAL4-based RasV12 oncogene expression, CRISPR-Cas9 editing and recombination mediated cassette exchange are likely to drive the establishment of many more lines from specific tissues, cells, or genotypes. However, the pace of creating new lines is hindered by several factors inherent to working with Drosophila cell cultures: single cell cloning, optimal media formulations and culture conditions capable of supporting lines from novel tissue sources or genotypes. Moreover, even though many Drosophila cell lines are morphologically and transcriptionally distinct it may be necessary to implement a standard for Drosophila cell line authentication, ensuring the identity and purity of each cell line. Altogether, recent advances and a standardized authentication effort should improve the utility of Drosophila cell cultures as a relevant model for fundamental and biomedical research. This article is categorized under: Technologies > Analysis of Cell, Tissue, and Animal Phenotypes.


Subject(s)
Cell Culture Techniques/methods , Drosophila Proteins/genetics , Drosophila/cytology , Drosophila/genetics , Gene Editing , Gene Expression Regulation , Animals , CRISPR-Cas Systems , Drosophila/metabolism , Drosophila Proteins/metabolism , Phenotype
11.
Cell Rep ; 21(10): 2671-2677, 2017 Dec 05.
Article in English | MEDLINE | ID: mdl-29212015

ABSTRACT

Although the intrinsic mechanisms that control whether stem cells divide symmetrically or asymmetrically underlie tissue growth and homeostasis, they remain poorly defined. We report that the RNA-binding protein fragile X mental retardation protein (FMRP) limits the symmetric division, and resulting expansion, of the stem cell population during adaptive intestinal growth in Drosophila. The elevated insulin sensitivity that FMRP-deficient progenitor cells display contributes to their accelerated expansion, which is suppressed by the depletion of insulin-signaling components. This FMRP activity is mediated solely via a second conserved RNA-binding protein, LIN-28, known to boost insulin signaling in stem cells. Via LIN-28, FMRP controls progenitor cell behavior by post-transcriptionally repressing the level of insulin receptor (InR). This study identifies the stem cell-based mechanism by which FMRP controls tissue adaptation, and it raises the possibility that defective adaptive growth underlies the accelerated growth, gastrointestinal, and other symptoms that affect fragile X syndrome patients.


Subject(s)
Drosophila Proteins/metabolism , Fragile X Mental Retardation Protein/metabolism , Intestines/cytology , RNA-Binding Proteins/metabolism , Stem Cells/cytology , Stem Cells/metabolism , Animals , Drosophila Proteins/genetics , Female , Fragile X Mental Retardation Protein/genetics , RNA-Binding Proteins/genetics , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/metabolism
12.
Methods Mol Biol ; 1478: 79-94, 2016.
Article in English | MEDLINE | ID: mdl-27730576

ABSTRACT

MicroRNAs are short noncoding, ~22-nucleotide RNAs that regulate protein abundance. The growth in our understanding of this class of RNAs has been rapid since their discovery just over a decade ago. We now appreciate that miRNAs are deeply embedded within the genetic networks that control basic features of metazoan cells including their identity, metabolism, and reproduction. The Drosophila melanogaster model system has made and will continue to make important contributions to this analysis. Intended as an introductory overview, here we review the current methods and resources available for functional analysis of fly miRNAs for those interested in performing this type of analysis.


Subject(s)
Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Gene Expression Regulation , MicroRNAs/genetics , RNA-Binding Proteins/genetics , Ribonuclease III/genetics , Animals , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Gene Expression Profiling , Genes, Reporter , Genetic Techniques , MicroRNAs/antagonists & inhibitors , MicroRNAs/classification , MicroRNAs/metabolism , Nucleic Acid Conformation , Oligonucleotide Array Sequence Analysis , RNA Isoforms/antagonists & inhibitors , RNA Isoforms/genetics , RNA Isoforms/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , RNA-Binding Proteins/metabolism , Ribonuclease III/metabolism , Signal Transduction
13.
Development ; 142(20): 3478-87, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26487778

ABSTRACT

Stem cells switch between asymmetric and symmetric division to expand in number as tissues grow during development and in response to environmental changes. The stem cell intrinsic proteins controlling this switch are largely unknown, but one candidate is the Lin-28 pluripotency factor. A conserved RNA-binding protein that is downregulated in most animals as they develop from embryos to adults, Lin-28 persists in populations of adult stem cells. Its function in these cells has not been previously characterized. Here, we report that Lin-28 is highly enriched in adult intestinal stem cells in the Drosophila intestine. lin-28 null mutants are homozygous viable but display defects in this population of cells, which fail to undergo a characteristic food-triggered expansion in number and have reduced rates of symmetric division as well as reduced insulin signaling. Immunoprecipitation of Lin-28-bound mRNAs identified Insulin-like Receptor (InR), forced expression of which completely rescues lin-28-associated defects in intestinal stem cell number and division pattern. Furthermore, this stem cell activity of lin-28 is independent of one well-known lin-28 target, the microRNA let-7, which has limited expression in the intestinal epithelium. These results identify Lin-28 as a stem cell intrinsic factor that boosts insulin signaling in intestinal progenitor cells and promotes their symmetric division in response to nutrients, defining a mechanism through which Lin-28 controls the adult stem cell division patterns that underlie tissue homeostasis and regeneration.


Subject(s)
Drosophila Proteins/physiology , Drosophila melanogaster/growth & development , Intestinal Mucosa/cytology , Intestinal Mucosa/growth & development , RNA-Binding Proteins/physiology , Stem Cells/cytology , Animals , Cell Division , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Female , Genotype , Green Fluorescent Proteins/metabolism , Homozygote , Insulin/metabolism , MicroRNAs/metabolism , Mutation , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , Receptor Protein-Tyrosine Kinases/physiology , Regeneration , Signal Transduction , Temperature
14.
Fly (Austin) ; 9(4): 173-7, 2015.
Article in English | MEDLINE | ID: mdl-26934725

ABSTRACT

In this Extra View, we extend our recent work on the protein LIN-28 and its role in adult stem cell divisions. LIN-28 is an mRNA- and microRNA-binding protein that is conserved from worms to humans. When expressed ectopically, it promotes the reprogramming of differentiated vertebrate cells into pluripotent stem cells as well as the regeneration of vertebrate tissues after injury. However, its endogenous function in stem cell populations is less clear. We recently reported that LIN-28 is specifically expressed in progenitor cells in the adult Drosophila intestine and enhances insulin signaling within this population. Loss of lin-28 alters the division patterns of these progenitor cells, limiting the growth of the intestinal epithelium that is ordinarily caused by feeding. Thus, LIN-28 is part of an uncharacterized circuit used to remodel a tissue in response to environmental cues like nutrition. Here, we extend this analysis by reporting that the levels of LIN-28 in progenitor cells are sensitive to nutrient availability. In addition, we speculate about the role of LIN-28 in the translational control of target mRNAs such as Insulin Receptor (InR) and how such translational control may be an important mechanism that underlies the stem cell dynamics needed for tissue homeostasis and growth.


Subject(s)
Drosophila Proteins/metabolism , Drosophila/physiology , RNA-Binding Proteins/metabolism , Animals , Drosophila/cytology , Intestinal Mucosa/metabolism , Intestines/cytology , Protein Biosynthesis , Receptor, Insulin/metabolism , Starvation , Stem Cells/metabolism
15.
Proc Natl Acad Sci U S A ; 111(4): 1421-6, 2014 Jan 28.
Article in English | MEDLINE | ID: mdl-24474768

ABSTRACT

Cleavage of microRNAs and mRNAs by Drosha and its cofactor Pasha/DGCR8 is required for animal development, but whether these proteins also have independent roles in development has been unclear. Known phenotypes associated with loss of either one of these two proteins are very similar and consistent with their joint function, even though both cofactors are involved with additional distinct RNA biogenesis pathways. Here, we report clear phenotypic differences between drosha and pasha/dgcr8 null alleles in two postembryonic lineages in the Drosophila brain: elimination of pasha/dgcr8 leads to defects that are not shared by drosha null mutations in the morphology of gamma neurons in the mushroom body lineage, as well as many neurons in the anterodorsal projection neuron lineage. These morphological defects are not detected in neurons that are genetically depleted of two additional microRNA pathway components, dicer-1 and argonaute1, indicating that they are not due to loss of microRNA activity. They are, however, phenocopied by a newly identified recessive gain-of-function allele in drosha that probably interferes with the microRNA independent functions of Pasha/DGCR8. These data therefore identify a general Drosha-independent DGCR8/Pasha pathway that promotes proper morphology in multiple neuronal lineages. Given that reduction of human DGCR8/Pasha may contribute to the cognitive and behavioral characteristics of DiGeorge syndrome patients, disruption of this newly described pathway could underlie human neurological disease.


Subject(s)
Drosophila Proteins/physiology , Morphogenesis , Neurons/cytology , RNA-Binding Proteins/physiology , Ribonuclease III/physiology , Alleles , Animals , Drosophila Proteins/genetics , MicroRNAs/genetics , Phenotype , RNA Processing, Post-Transcriptional , RNA-Binding Proteins/genetics , Ribonuclease III/genetics
16.
Curr Top Dev Biol ; 105: 97-123, 2013.
Article in English | MEDLINE | ID: mdl-23962840

ABSTRACT

MicroRNAs (miRNAs) ensure progression through development by synchronizing cell fate transitions in response to environmental cues. These cues are mediated at least in part by steroid hormones. Emerging evidence indicates that miRNAs are also components of additional systemic signaling pathways, including insulin, stress, immune, and circadian pathways. Thus, the roles that miRNAs play during development are reflected in their post-developmental functions, where they similarly function to coordinate cell behavior in response to environmental cues. In this review, we summarize current work highlighting the role of miRNAs in systemic signaling pathways in Drosophila melanogaster as a way of synthesizing the underlying roles of miRNAs in both animal developmental transitions and adult physiology.


Subject(s)
Circadian Rhythm/physiology , Drosophila melanogaster/physiology , Insulin/metabolism , Membrane Proteins/physiology , Metabolic Networks and Pathways/physiology , MicroRNAs/metabolism , Models, Biological , Serine Endopeptidases/physiology , Animals , Ecdysone/metabolism , Juvenile Hormones/metabolism , MicroRNAs/biosynthesis
18.
Virology ; 341(1): 72-9, 2005 Oct 10.
Article in English | MEDLINE | ID: mdl-16083932

ABSTRACT

Enterovirus 71 (EV71) is a highly infectious major causative agent of hand, foot, and mouth disease (HFMD) which could lead to severe neurological complications. There is currently no effective therapy against EV71. In this study, RNA interference (RNAi) is employed as a therapeutic approach for specific viral inhibition. Various regions of the EV71 genome were targeted for inhibition by chemically synthesized siRNAs. Transfection of rhabdomyosarcoma (RD) cells with siRNA targeting the 3'UTR, 2C, 3C, or 3D region significantly alleviated cytopathic effects of EV71. The inhibitory effect was dosage-dependent with a corresponding decrease in viral RNA, viral proteins, and plaque formations by EV71. Viral inhibition of siRNA transfected RD cells was still evident after 48 h. In addition, no significant adverse off-target silencing effects were observed. These results demonstrated the potential and feasibility for the use of siRNA as an antiviral therapy for EV71 infections.


Subject(s)
Enterovirus A, Human/genetics , RNA Interference , Base Sequence , Cell Line , Cytopathogenic Effect, Viral/genetics , Enterovirus A, Human/growth & development , Enterovirus A, Human/pathogenicity , Enterovirus Infections/therapy , Humans , RNA, Small Interfering/genetics , RNA, Viral/genetics , Transfection , Viral Plaque Assay
19.
J Virol Methods ; 130(1-2): 83-8, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16026862

ABSTRACT

The severe acute respiratory syndrome human coronavirus (SARS-CoV) nucleocapsid protein (N protein) is its most antigenic structural protein. The N protein gene has been cloned into a yeast expression vector pPIC9, transformed into Pichia pastoris strain GS115 and induced for expression by methanol. SDS-PAGE and Western blot showed that the N protein was expressed at a level of 3mg/ml of culture medium. Characterization by mass spectrometry, circular dichroism and fluorescence luminescence assays showed that the expressed N protein displayed a beta-sheet secondary structure in solution and it is stable in the pH range between 5.0 and 8.0. The P. pastoris-expressed N protein is believed to more closely resemble native SARS N protein than the bacterially expressed N protein.


Subject(s)
Nucleocapsid Proteins/biosynthesis , Pichia/metabolism , Amino Acid Sequence , Circular Dichroism , Coronavirus Nucleocapsid Proteins , Genetic Vectors , Hydrogen-Ion Concentration , Molecular Sequence Data , Nucleocapsid Proteins/chemistry , Nucleocapsid Proteins/genetics , Protein Engineering , Protein Structure, Secondary , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...