Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 604: 327-339, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34265690

ABSTRACT

HYPOTHESIS: The air-solution interface of supersaturated calcium hydrogen carbonate (Ca(HCO3)2) represents the highest saturation state due to evaporation/CO2-degassing, where calcite crystals are expected to nucleate and grow along the interface. Hence, it should be possible to form a free-standing mineral-only calcium carbonate (CaCO3) microfilm at the air-solution interface of Ca(HCO3)2. The air-solution interface of phosphate buffered saline (PBS) could represent a phase boundary to introduce a hybrid microstructure of CaCO3 and carbonate-rich dicalcium hydroxide phosphate (carbonate-rich hydroxylapatite). EXPERIMENTS: Supersaturated Ca(HCO3)2 was prepared at high pressure and heated to form CaCO3 microfilms, which were converted to bone-like microfilms at the air-solution interface of PBS by dissolution-recrystallisation. The microfilms were characterised by scanning electron microscopy, 3D confocal microscopy, atomic force microscopy, Fourier transform infrared spectroscopy, laser Raman microspectroscopy, and X-ray photoelectron spectroscopy. An in situ X-ray diffraction (XRD) system that simulates the aforementioned interfacial techniques was developed to elucidate the microfilms formation mechanisms. FINDINGS: The CaCO3 and bone-like microfilms were free-standing, contiguous, and crystalline. The bone-like microfilms exhibited a hybrid structure consisting of a surface layer of remnant calcite and a carbonate-rich hydroxylapatite core of plates. The present work shows that the air-solution interface can be used to introduce hybrid microstructures to mineral microfilms.


Subject(s)
Calcium Carbonate , Durapatite , Microscopy, Atomic Force , Microscopy, Electron, Scanning , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...