Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Cell ; 169(3): 442-456.e18, 2017 04 20.
Article in English | MEDLINE | ID: mdl-28431245

ABSTRACT

Fluoropyrimidines are the first-line treatment for colorectal cancer, but their efficacy is highly variable between patients. We queried whether gut microbes, a known source of inter-individual variability, impacted drug efficacy. Combining two tractable genetic models, the bacterium E. coli and the nematode C. elegans, we performed three-way high-throughput screens that unraveled the complexity underlying host-microbe-drug interactions. We report that microbes can bolster or suppress the effects of fluoropyrimidines through metabolic drug interconversion involving bacterial vitamin B6, B9, and ribonucleotide metabolism. Also, disturbances in bacterial deoxynucleotide pools amplify 5-FU-induced autophagy and cell death in host cells, an effect regulated by the nucleoside diphosphate kinase ndk-1. Our data suggest a two-way bacterial mediation of fluoropyrimidine effects on host metabolism, which contributes to drug efficacy. These findings highlight the potential therapeutic power of manipulating intestinal microbiota to ensure host metabolic health and treat disease.


Subject(s)
Antineoplastic Agents/metabolism , Escherichia coli/metabolism , Fluorouracil/metabolism , Gastrointestinal Microbiome , Animals , Autophagy , Caenorhabditis elegans , Cell Death , Colorectal Neoplasms/drug therapy , Diet , Escherichia coli/enzymology , Escherichia coli/genetics , Humans , Models, Animal , Pentosyltransferases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...