Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 179
Filter
1.
Neurosurg Focus ; 56(6): E15, 2024 06.
Article in English | MEDLINE | ID: mdl-38823057

ABSTRACT

OBJECTIVE: Essential tremor (ET) is the most common movement disorder. Deep brain stimulation (DBS) targeting the ventral intermediate nucleus (VIM) is known to improve symptoms in patients with medication-resistant ET. However, the clinical effectiveness of VIM-DBS may vary, and other targets have been proposed. The authors aimed to investigate whether the same anatomical structure is responsible for tremor control both immediately after VIM-DBS and at later follow-up evaluations. METHODS: Of 68 electrodes from 41 patients with ET, the authors mapped the distances of the active contact from the VIM, the dentatorubrothalamic tract (DRTT), and the caudal zona incerta (cZI) and compared them using Friedman's ANOVA and the Wilcoxon signed-rank follow-up test. The same distances were also compared between the initially planned target and the final implantation site after intraoperative macrostimulation. Finally, the comparison among the three structures was repeated for 16 electrodes whose active contact was changed after a mean 37.5 months follow-up to improve tremor control. RESULTS: After lead implantation, the VIM was statistically significantly closer to the active contact than both the DRTT (p = 0.008) and cZI (p < 0.001). This result did not change if the target was moved based on intraoperative macrostimulation. At the last follow-up, the active contact distance from the VIM was always significantly less than that of the cZI (p < 0.001), but the distance from the DRTT was reduced and even less than the distance from the VIM. CONCLUSIONS: In patients receiving VIM-DBS, the VIM itself is the structure driving the anti-tremor effect and remains more effective than the cZI, even years after implantation. Nevertheless, the role of the DRTT may become more important over time and may help sustain the clinical efficacy when the habituation from the VIM stimulation ensues.


Subject(s)
Deep Brain Stimulation , Essential Tremor , Ventral Thalamic Nuclei , Zona Incerta , Humans , Essential Tremor/therapy , Essential Tremor/surgery , Deep Brain Stimulation/methods , Zona Incerta/surgery , Female , Male , Middle Aged , Aged , Ventral Thalamic Nuclei/surgery , Treatment Outcome , Adult , Follow-Up Studies , Aged, 80 and over
2.
Q J Nucl Med Mol Imaging ; 68(2): 101-115, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38860274

ABSTRACT

Prostate cancer (PCa) remains a significant global health challenge, particularly in its advanced stages. Despite progress in early detection and treatment, PCa is the second most common cancer diagnosis among men. This review aims to provide an overview of current therapeutic approaches and innovations in PCa management, focusing on the latest advancements and ongoing challenges. We conducted a narrative review of clinical trials and research studies, focusing on PARP inhibitors (PARPis), phosphoinositide 3 kinase-protein kinase B inhibitors, immunotherapy, and radioligand therapies (RLTs). Data was sourced from major clinical trial databases and peer-reviewed journals. Androgen deprivation therapy and androgen-receptor pathway inhibitors remain foundational in managing castration-sensitive and early-stage castration-resistant PCa (CRPC). PARPi's, such as olaparib and rucaparib, have emerged as vital treatments for metastatic CRPC with homologous recombination repair gene mutations, highlighting the importance of personalized medicine. Immune checkpoint inhibitors (ICIs) have shown clinical benefit limited to specific subgroups of PCa, demonstrating significant improvement in efficacy in patients with microsatellite instability/mismatch repair or cyclin-dependent kinase 12 alteration, highlighting the importance of focusing ongoing research on identifying and characterizing these subgroups to maximize the clinical benefits of ICIs. RLTs have shown effectiveness in treating mCRPC. Different alpha emitters (like [225Ac]PSMA) and beta emitters compounds (like [177Lu]PSMA) impact treatment differently due to their energy transfer characteristics. Clinical trials like VISION and TheraP have demonstrated positive outcomes with RLT, particularly [177Lu]PSMA-617, leading to FDA approval. Ongoing trials and future perspectives explore the potential of [225Ac]PSMA, aiming to improve outcomes for patients with mCRPC. The landscape of PCa treatment is evolving, with significant advancements in both established and novel therapies. The combination of hormonal therapies, chemotherapy, PARPis, immunotherapy, and RLTs, guided by genetic and molecular insights, opens new possibilities for personalized treatment.


Subject(s)
Immunotherapy , Poly(ADP-ribose) Polymerase Inhibitors , Prostatic Neoplasms , Humans , Male , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Prostatic Neoplasms/therapy , Prostatic Neoplasms/drug therapy , Molecular Targeted Therapy , Radiopharmaceuticals/therapeutic use , Ligands
3.
Nanotechnology ; 35(32)2024 May 23.
Article in English | MEDLINE | ID: mdl-38640909

ABSTRACT

Paper is an ideal substrate for the development of flexible and environmentally sustainable ubiquitous electronic systems. When combined with nanomaterial-based devices, it can be harnessed for various Internet-of-Things applications, ranging from wearable electronics to smart packaging. However, paper remains a challenging substrate for electronics due to its rough and porous nature. In addition, the absence of established fabrication methods is impeding its utilization in wearable applications. Unlike other paper-based electronics with added layers, in this study, we present a scalable spray-lithography on a commercial paper substrate. We present a non-vacuum spray-lithography of chemical vapor deposition (CVD) single-layer graphene (SLG), carbon nanotubes (CNTs) and perovskite quantum dots (QDs) on a paper substrate. This approach combines the advantages of two large-area techniques: CVD and spray-coating. The first technique allows for the growth of SLG, while the second enables the spray coating of a mask to pattern CVD SLG, electrodes (CNTs), and photoactive (QDs) layers. We harness the advantages of perovskite QDs in photodetection, leveraging their strong absorption coefficients. Integrating them with the graphene enhances the photoconductive gain mechanism, leading to high external responsivity. The presented device shows high external responsivity of ∼520 A W-1at 405 nm at <1 V bias due to the photoconductive gain mechanism. The prepared paper-based photodetectors (PDs) achieve an external responsivity of 520 A W-1under 405 nm illumination at <1 V operating voltage. To the best of our knowledge, our devices have the highest external responsivity among paper-based PDs. By fabricating arrays of PDs on a paper substrate in the air, this work highlights the potential of this scalable approach for enabling ubiquitous electronics on paper.

4.
ACS Sens ; 9(4): 1945-1956, 2024 04 26.
Article in English | MEDLINE | ID: mdl-38530950

ABSTRACT

Urinary tract infections (UTIs), which can lead to pyelonephritis, urosepsis, and even death, are among the most prevalent infectious diseases worldwide, with a notable increase in treatment costs due to the emergence of drug-resistant pathogens. Current diagnostic strategies for UTIs, such as urine culture and flow cytometry, require time-consuming protocols and expensive equipment. We present here a machine learning-assisted colorimetric sensor array based on recognition of ligand-functionalized Fe single-atom nanozymes (SANs) for the identification of microorganisms at the order, genus, and species levels. Colorimetric sensor arrays are built from the SAN Fe1-NC functionalized with four types of recognition ligands, generating unique microbial identification fingerprints. By integrating the colorimetric sensor arrays with a trained computational classification model, the platform can identify more than 10 microorganisms in UTI urine samples within 1 h. Diagnostic accuracy of up to 97% was achieved in 60 UTI clinical samples, holding great potential for translation into clinical practice applications.


Subject(s)
Colorimetry , Machine Learning , Urinary Tract Infections , Urinary Tract Infections/diagnosis , Urinary Tract Infections/microbiology , Urinary Tract Infections/urine , Colorimetry/methods , Humans , Iron/chemistry , Biosensing Techniques/methods
5.
Sci Adv ; 10(6): eadk6856, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38335291

ABSTRACT

Formaldehyde, a known human carcinogen, is a common indoor air pollutant. However, its real-time and selective recognition from interfering gases remains challenging, especially for low-power sensors suffering from noise and baseline drift. We report a fully 3D-printed quantum dot/graphene-based aerogel sensor for highly sensitive and real-time recognition of formaldehyde at room temperature. By optimizing the morphology and doping of printed structures, we achieve a record-high and stable response of 15.23% for 1 part per million formaldehyde and an ultralow detection limit of 8.02 parts per billion consuming only ∼130-microwatt power. On the basis of measured dynamic response snapshots, we also develop intelligent computational algorithms for robust and accurate detection in real time despite simulated substantial noise and baseline drift, hitherto unachievable for room temperature sensors. Our framework in combining materials engineering, structural design, and computational algorithm to capture dynamic response offers unprecedented real-time identification capabilities of formaldehyde and other volatile organic compounds at room temperature.

6.
Sensors (Basel) ; 24(3)2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38339574

ABSTRACT

This paper presents the development of a miniaturized sensor device for selective detection of pathogens, specifically Influenza A Influenza virus, as an enveloped virus is relatively vulnerable to damaging environmental impacts. In consideration of environmental factors such as humidity and temperature, this particular pathogen proves to be an ideal choice for our study. It falls into the category of pathogens that pose greater challenges due to their susceptibility. An impedance biosensor was integrated into an existing platform and effectively separated and detected high concentrations of airborne pathogens. Bio-functionalized hydrogel-based detectors were utilized to analyze virus-containing particles. The sensor device demonstrated high sensitivity and specificity when exposed to varying concentrations of Influenza A virus ranging from 0.5 to 50 µg/mL. The sensitivity of the device for a 0.5 µg/mL analyte concentration was measured to be 695 Ω· mL/µg. Integration of this pathogen detector into a compact-design air quality monitoring device could foster the advancement of personal exposure monitoring applications. The proposed sensor device offers a promising approach for real-time pathogen detection in complex environmental settings.


Subject(s)
Air Pollution , Biosensing Techniques , Dielectric Spectroscopy , Electric Impedance
7.
Ther Adv Neurol Disord ; 16: 17562864231202064, 2023.
Article in English | MEDLINE | ID: mdl-37822361

ABSTRACT

Background: Epilepsy is a widespread neurologic disorder and almost one-third of patients suffer from drug-resistant epilepsy (DRE). Neuromodulation targeting the centromediannucleus of the thalamus (CM) has been showing promising results for patients with generalized DRE who are not surgical candidates. Recently, the effect of CM- deep brain stimulation (DBS) in DRE patients was investigated in the Electrical Stimulation of Thalamus for Epilepsy of Lennox-Gastaut phenotype (ESTEL) trial, a monocentric randomized-controlled study. The same authors described a 'cold-spot' and a 'sweet-spot', which are defined as the volume of stimulation in the thalamus yielding the least and the best clinical response, respectively. However, it remains unclear which structural connections may contribute to the anti-seizure effect of the stimulation. Objective: We investigated the differences in structural connectivity among CM, the sweet-spot and the cold-spot. Furthermore, we tried to validate our results in a cohort of DRE patients who underwent CM-DBS or CM-RNS (responsive neurostimulation). We hypothesized that the sweet-spot would share similar structural connectivity with responder patients. Methods: By using the software FMRIB Software Library (FSL), probabilistic tractography was performed on 100 subjects from the Human Connectome Project to calculate the probability of connectivity of the whole CM, the sweet-spot and the cold-spot to 45 cortical and subcortical areas. Results among the three seeds were compared with multivariate analysis of variance (MANOVA). Similarly, the structural connectivity of volumes of tissue activated (VTAs) from eight DRE patients was investigated. Patients were divided into responders and non-responders based on the degree of reduction in seizure frequency, and the mean probabilities of connectivity were similarly compared between the two groups. Results: The sweet-spot demonstrated a significantly higher probability of connectivity (p < 0.001) with the precentral gyrus, superior frontal gyrus, and the cerebellum than the whole CM and the cold-spot. Responder patients displayed a higher probability of connectivity with both ipsilateral (p = 0.011) and contralateral cerebellum (p = 0.04) than the non-responders. Conclusion: Cerebellar connections seem to contribute to the beneficial effects of CM-neuromodulation in patients with drug-resistant generalized epilepsy.

8.
Nanotechnology ; 35(4)2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37848022

ABSTRACT

In the dynamic landscape of the Internet of Things (IoT), where smart devices are reshaping our world, nanomaterials can play a pivotal role in ensuring the IoT's sustainability. These materials are poised to redefine the development of smart devices, not only enabling cost-effective fabrication but also unlocking novel functionalities. As the IoT is set to encompass an astounding number of interconnected devices, the demand for environmentally friendly nanomaterials takes center stage. ThisFocus Issuespotlights cutting-edge research that explores the intersection of nanomaterials and sustainability. The collection delves deep into this critical nexus, encompassing a wide range of topics, from fundamental properties to applications in devices (e.g. sensors, optoelectronic synapses, energy harvesters, memory components, energy storage devices, and batteries), aspects concerning circularity and green synthesis, and an array of materials comprising organic semiconductors, perovskites, quantum dots, nanocellulose, graphene, and two-dimensional semiconductors. Authors not only showcase advancements but also delve into the sustainability profile of these materials, fostering a responsible endeavour toward a green IoT future.

9.
J Hazard Mater ; 455: 131644, 2023 08 05.
Article in English | MEDLINE | ID: mdl-37209558

ABSTRACT

Two-dimensional (2D) materials attract attention from the academic community due to their excellent properties, and their wide application in sensing is expected to revolutionize environmental monitoring, medical diagnostics, and food safety. In this work, we systematically evaluate the effects of 2D materials on the Au chip surface plasmon resonance (SPR) sensor. The results reveal that 2D materials cannot improve the sensitivity of intensity-modulated SPR sensors. However, there exists an optimal real part of RI of 3.5-4.0 and optimal thickness when choosing nanomaterials for sensitivity enhancement of SPR sensors in angular modulation. In addition, the smaller the imaginary part of the nanomaterial RI, the higher the sensitivity of the proposed Au SPR sensor. The 2D material's thickness needed for the highest sensitivity decreases with increasing real part and imaginary part of the RI. As a case study, we developed a 5 nm-thickness MoS2-enhanced SPR biosensor, which exhibited a low sulfonamides (SAs) detection limit of 0.05 µg/L based on a group-targeting indirect competitive immunoassay, nearly 12-fold lower than that of the bare Au SPR system. The proposed criteria help to shed light on the 2D material-Au surface interaction, which has greatly promoted the development of novel SPR biosensing with outstanding sensitivity.


Subject(s)
Biosensing Techniques , Nanostructures , Surface Plasmon Resonance/methods , Anti-Bacterial Agents , Oligonucleotide Array Sequence Analysis
10.
Sci Adv ; 9(16): eadf4049, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37083532

ABSTRACT

An integrated textile electronic system is reported here, enabling a truly free form factor system via textile manufacturing integration of fiber-based electronic components. Intelligent and smart systems require freedom of form factor, unrestricted design, and unlimited scale. Initial attempts to develop conductive fibers and textile electronics failed to achieve reliable integration and performance required for industrial-scale manufacturing of technical textiles by standard weaving technologies. Here, we present a textile electronic system with functional one-dimensional devices, including fiber photodetectors (as an input device), fiber supercapacitors (as an energy storage device), fiber field-effect transistors (as an electronic driving device), and fiber quantum dot light-emitting diodes (as an output device). As a proof of concept applicable to smart homes, a textile electronic system composed of multiple functional fiber components is demonstrated, enabling luminance modulation and letter indication depending on sunlight intensity.

11.
Seizure ; 105: 22-28, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36657225

ABSTRACT

Deep brain stimulation (DBS) of the thalamic nuclei for the treatment of drug-resistant epilepsy (DRE) has been investigated for decades. In recent years, DBS targeting the anterior nucleus of the thalamus (ANT) was approved by CE and FDA for the treatment of focal-onset DRE in light of the results from the multicentric randomized controlled SANTE trial. However, stereotactic targeting of thalamic nuclei is not straightforward because of the low contrast definition among thalamic nuclei on the current MRI sequences. When the FGATIR sequence is added to the preoperative MRI protocol, the mammillothalamic tract can be identified and used as a visible landmark to directly target ANT. According to the current evidence, the trans-ventricular trajectory allows the placement of stimulating contact into the nucleus more frequently than the trans-cortical trajectory. Another thalamic nucleus whose stimulation for the treatment of generalized DRE is receiving increasing attention is the centromedian nucleus (CM). CM-DBS seems to be particularly efficacious in patients suffering from Lennox-Gastault syndrome (LGS) and the recent monocentric randomized controlled ESTEL trial also described a beneficial "sweet-spot". However, CM targeting is still based on indirect stereotactic coordinates, since acquisition times and post-processing techniques of the actual MRI sequences are not applicable in clinical practice. Moreover, the results of the ESTEL trial await confirmation from similar studies accounting for epileptic syndromes other than LGS. Therefore, novel neuroimaging approaches are advisable to improve the surgical targeting of CM and potentially tailor the stimulation based on the patient's specific epileptic phenotype.


Subject(s)
Anterior Thalamic Nuclei , Deep Brain Stimulation , Drug Resistant Epilepsy , Epilepsy , Humans , Deep Brain Stimulation/methods , Drug Resistant Epilepsy/diagnostic imaging , Drug Resistant Epilepsy/surgery , Anterior Thalamic Nuclei/physiology , Epilepsy/therapy , Magnetic Resonance Imaging , Randomized Controlled Trials as Topic
12.
Mol Ther ; 31(2): 362-373, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36114671

ABSTRACT

The uneven worldwide vaccination coverage against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and emergence of variants escaping immunity call for broadly effective and easily deployable therapeutic agents. We have previously described the human single-chain scFv76 antibody, which recognizes SARS-CoV-2 Alpha, Beta, Gamma and Delta variants. We now show that scFv76 also neutralizes the infectivity and fusogenic activity of the Omicron BA.1 and BA.2 variants. Cryoelectron microscopy (cryo-EM) analysis reveals that scFv76 binds to a well-conserved SARS-CoV-2 spike epitope, providing the structural basis for its broad-spectrum activity. We demonstrate that nebulized scFv76 has therapeutic efficacy in a severe hACE2 transgenic mouse model of coronavirus disease 2019 (COVID-19) pneumonia, as shown by body weight and pulmonary viral load data. Counteraction of infection correlates with inhibition of lung inflammation, as observed by histopathology and expression of inflammatory cytokines and chemokines. Biomarkers of pulmonary endothelial damage were also significantly reduced in scFv76-treated mice. The results support use of nebulized scFv76 for COVID-19 induced by any SARS-CoV-2 variants that have emerged so far.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Animals , Mice , SARS-CoV-2/genetics , Cryoelectron Microscopy , Respiratory Aerosols and Droplets , Antibodies , Mice, Transgenic , Lung , Antibodies, Viral , Antibodies, Neutralizing
13.
J Environ Manage ; 325(Pt A): 116455, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36242975

ABSTRACT

The in-situ resource utilisation (ISRU), in terms of native rocky materials and astronaut wastes, is crucial in contests of soil-based space-farming. Nevertheless, extra-terrestrial soils are very different from Earth soils, lacking any form of organic carbon and associated macro and micronutrients. In this research, we aimed to study and modify two commercially available Lunar and Martian regolith simulants (LHS-1 from Exolith Lab and MMS-1 from Martian Garden) to make them an adequate medium for plant growth. Lettuce was chosen as reference crop to guide the discussion on the results obtained. To reach this main objective, we added to simulants a commercially available monogastric-based organic manure chosen as a substitute of a possible organic amendment produced onboard. The simulant/manure mixture rates were 100:0, 90:10, 70:30, 50:50; w:w. As expected, an approximately linear increase of total and bioavailable contents of macro (N, S, P, Ca, K, Mg) and micro (Fe, Mn, Cu, Zn) nutrients with increasing manure addition to simulants was observed. On the other hand, the very high pH of manure (pH, 9.02) along with its salinity (EC, 6.7 dS m-1) and sodicity (Na, 5.3 g kg-1), did not correct the already high pH of simulants (very high for LHS-1), but rather raised their soluble salt content and sodium amount on the exchange complex. In addition, an increase of toxic soluble aluminium and heavy elements (Pb, Ni, Cr, V) was observed, mainly in the strongly alkaline lunar simulant/manure mixtures. The addition of an organic source also produced a generalised improvement of water retention and hydraulic conductivity of both regolith simulants, in proportion to the percentage of manure addiction. For both situations, the best mixture ratio was 70:30. In terms of water retained, the LHS-1 mixtures benefited more than the MMS-1 ones by manure addition since water was held more in the "dry" (between -100 and -600 cm of matric potential head) than in the "humid" (between -25 and -100 cm of matric potential head) region of water retention. This would make LHS-1 mixtures more useful for cultivation of lettuce, at least in terms of physico-hydraulic properties. Nevertheless, the overall characterisation of the mixtures unveiled that MMS-1-based substrates can ensure better agronomic performances than LHS-1 ones, mainly due to lower pHs and higher nutrient availability; this divergent fertility was particularly evident at 90:10 simulant/manure rate and tend to be mitigated by increasing the levels of manure.


Subject(s)
Manure , Mars , Soil/chemistry , Extraterrestrial Environment , Lactuca , Water
14.
IEEE J Biomed Health Inform ; 27(1): 339-350, 2023 01.
Article in English | MEDLINE | ID: mdl-36327173

ABSTRACT

In recent years, human activity recognition (HAR) technologies in e-health have triggered broad interest. In literature, mainstream works focus on the body's spatial information (i.e. postures) which lacks the interpretation of key bioinformatics associated with movements, limiting the use in applications requiring comprehensively evaluating motion tasks' correctness. To address the issue, in this article, a Wearables-based Multi-column Neural Network (WMNN) for HAR based on multi-sensor fusion and deep learning is presented. Here, the Tai Chi Eight Methods were utilized as an example as in which both postures and muscle activity strengths are significant. The research work was validated by recruiting 14 subjects in total, and we experimentally show 96.9% and 92.5% accuracy for training and testing, for a total of 144 postures and corresponding muscle activities. The method is then provided with a human-machine interface (HMI), which returns users with motion suggestions (i.e. postures and muscle strength). The report demonstrates that the proposed HAR technique can enhance users' self-training efficiency, potentially promoting the development of the HAR area.


Subject(s)
Neural Networks, Computer , Wearable Electronic Devices , Humans , Human Activities , Movement , Motion
15.
Plants (Basel) ; 11(23)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36501382

ABSTRACT

To make feasible the crewed missions to the Moon or Mars, space research is focusing on the development of bioregenerative life support systems (BLSS) designed to produce food crops based on in situ resource utilisation (ISRU), allowing to reduce terrestrial input and to recycle organic wastes. In this regard, a major question concerns the suitability of native regoliths for plant growth and how their agronomic performance is affected by additions of organic matter from crew waste. We tested plant growth substrates consisting of MMS-1 (Mars) or LHS-1 (Lunar) simulants mixed with a commercial horse/swine monogastric manure (i.e., an analogue of crew excreta and crop residues) at varying rates (100:0, 90:10, 70:30, 50:50, w/w). Specifically, we measured: (i) lettuce (Lactuca sativa L. cultivar 'Grand Rapids') growth (at 30 days in open gas exchange climate chamber with no fertilisation), plant physiology, and nutrient uptake; as well as (ii) microbial biomass C and N, enzymatic activity, and nutrient bioavailability in the simulant/manure mixtures after plant growth. We discussed mechanisms of different plant yield, architecture, and physiology as a function of chemical, physico-hydraulic, and biological properties of different substrates. A better agronomic performance, in terms of plant growth and optically measured chlorophyll content, nutrient availability, and enzymatic activity, was provided by substrates containing MMS-1, in comparison to LHS-1-based ones, despite a lower volume of readily available water (likely due to the high-frequency low-volume irrigation strategy applied in our experiment and foreseen in space settings). Other physical and chemical properties, along with a different bioavailability of essential nutrients for plants and rhizosphere biota, alkalinity, and release of promptly bioavailable Na from substrates, were identified as the factors leading to the better ranking of MMS-1 in plant above and below-ground mass and physiology. Pure Mars (MMS-1) and Lunar (LHS-1) simulants were able to sustain plant growth even in absence of fertilisation, but the amendment with the monogastric manure significantly improved above- and below-ground plant biomass; moreover, the maximum lettuce leaf production, across combinations of simulants and amendment rates, was obtained in treatments resulting in a finer root system. Increasing rates of monogastric manure stimulated the growth of microbial biomass and enzymatic activities, such as dehydrogenase and alkaline phosphomonoesterase, which, in turn, fostered nutrient bioavailability. Consequently, nutrient uptake and translocation into lettuce leaves were enhanced with manure supply, with positive outcomes in the nutritional value of edible biomass for space crews. The best crop growth response was achieved with the 70:30 simulant/manure mixture due to good availability of nutrients and water compared to low amendment rates, and better-saturated hydraulic conductivity compared to high organic matter application. A 70:30 simulant/manure mixture is also a more sustainable option than a 50:50 mixture for a BLSS developed on ISRU strategy. Matching crop growth performance and (bio)chemical, mineralogical, and physico-hydraulic characteristics of possible plant growth media for space farming allows a better understanding of the processes and dynamics occurring in the experimental substrate/plant system, potentially suitable for an extra-terrestrial BLSS.

16.
Nat Commun ; 13(1): 4189, 2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35922408

ABSTRACT

We propose a computational design framework to design the architecture of a white lighting system having multiple pixelated patterns of electric-field-driven quantum dot light-emitting diodes. The quantum dot of the white lighting system has been optimised by a system-level combinatorial colour optimisation process with the Nelder-Mead algorithm used for machine learning. The layout of quantum dot patterns is designed precisely using rigorous device-level charge transport simulation with an electric-field dependent charge injection model. A theoretical maximum of 97% colour rendering index has been achieved with red, green, cyan, and blue quantum dot light-emitting diodes as primary colours. The white lighting system has been fabricated using the transfer printing technique to validate the computational design framework. It exhibits excellent lighting performance of 92% colour rendering index and wide colour temperature variation from 1612 K to 8903 K with only the four pixelated quantum dots as primary.

17.
Sci Rep ; 12(1): 12288, 2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35853965

ABSTRACT

Materials adopted in electronic gas sensors, such as chemiresistive-based NO2 sensors, for integration in clothing fail to survive standard wash cycles due to the combined effect of aggressive chemicals in washing liquids and mechanical abrasion. Device failure can be mitigated by using encapsulation materials, which, however, reduces the sensor performance in terms of sensitivity, selectivity, and therefore utility. A highly sensitive NO2 electronic textile (e-textile) sensor was fabricated on Nylon fabric, which is resistant to standard washing cycles, by coating Graphene Oxide (GO), and GO/Molybdenum disulfide (GO/MoS2) and carrying out in situ reduction of the GO to Reduced Graphene Oxide (RGO). The GO/MoS2 e-textile was selective to NO2 and showed sensitivity to 20 ppb NO2 in dry air (0.05%/ppb) and 100 ppb NO2 in humid air (60% RH) with a limit of detection (LOD) of ~ 7.3 ppb. The selectivity and low LOD is achieved with the sensor operating at ambient temperatures (~ 20 °C). The sensor maintained its functionality after undergoing 100 cycles of standardised washing with no encapsulation. The relationship between temperature, humidity and sensor response was investigated. The e-textile sensor was embedded with a microcontroller system, enabling wireless transmission of the measurement data to a mobile phone. These results show the potential for integrating air quality sensors on washable clothing for high spatial resolution (< 25 cm2)-on-body personal exposure monitoring.

18.
ACS Appl Mater Interfaces ; 14(26): 30410-30419, 2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35758022

ABSTRACT

The triboelectric effect occurs when two dissimilar materials are in physical contact, attributed to the combination of contact electrification (CE) and electrostatic induction. It has been extensively explored for the development of high-performance triboelectric nanogenerators (TENGs). In this paper, we report on, besides the CE-related charge generation, an additional charge generation phenomenon associated with the modulation of the p-n junction when two semiconductor materials [methylammonium lead iodide (MAPI) and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS)] are put in contact and separated dynamically. The electrical outputs generated by the CE effect are determined by the surface potential difference between the two friction materials, while the ones induced by the p-n junction modulation are determined by the dynamic variations in the depletion widths of the two semiconductor friction materials. The outputs generated by the CE effect and the p-n junction effect are well separated in time scale; the p-n junction modulation contributes ∼20% of the total charge generated and could be varied by changing the chemical composition of the semiconductors. The results may provide an alternative method for the development of high-performance TENGs by utilizing this additional p-n junction modulation effect.

19.
Front Nutr ; 9: 890786, 2022.
Article in English | MEDLINE | ID: mdl-35571954

ABSTRACT

The supplementation of bioactive compounds in astronaut's diets is undeniable, especially in the extreme and inhospitable habitat of future space settlements. This study aims to enhance the Martian and Lunar regolith fertility (testing two commercial simulants) through the provision of organic matter (manure) as established by in situ resource utilization (ISRU) approach. In this perspective, we obtained 8 different substrates after mixing Mojave Mars Simulant (MMS-1) or Lunar Highlands Simulant (LHS-1), with four different rates of manure (0, 10, 30, and 50%, w/w) from monogastric animals. Then, we assessed how these substrates can modulate fresh yield, organic acid, carotenoid content, antioxidant activity, and phenolic profile of lettuce plants (Lactuca sativa L.). Regarding fresh biomass production, MMS-1-amended substrates recorded higher yields than LHS-1-ones; plants grown on a 70:30 MMS-1/manure mixture produced the highest foliar biomass. Moreover, we found an increase in lutein and ß-carotene content by + 181 and + 263%, respectively, when applying the highest percentage of manure (50%) compared with pure simulants or less-amended mixtures. The 50:50 MMS-1/manure treatment also contained the highest amounts of individual and total organic acids, especially malate content. The highest antioxidant activity for the ABTS assay was recorded when no manure was added. The highest content of total hydroxycinnamic acids was observed when no manure was added, whereas ferulic acid content (most abundant compound) was the highest in 70:30 simulant/manure treatment, as well as in pure LHS-1 simulant. The flavonoid content was the highest in pure-simulant treatment (for most of the compounds), resulting in the highest total flavonoid and total phenol content. Our findings indicate that the addition of manure at specific rates (30%) may increase the biomass production of lettuce plants cultivated in MMS-1 simulant, while the phytochemical composition is variably affected by manure addition, depending on the stimulant. Therefore, the agronomic practice of manure amendment showed promising results; however, it must be tested with other species or in combination with other factors, such as fertilization rates and biostimulants application, to verify its applicability in space colonies for food production purposes.

20.
Nat Commun ; 13(1): 814, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35145096

ABSTRACT

Smart textiles consist of discrete devices fabricated from-or incorporated onto-fibres. Despite the tremendous progress in smart textiles for lighting/display applications, a large scale approach for a smart display system with integrated multifunctional devices in traditional textile platforms has yet to be demonstrated. Here we report the realisation of a fully operational 46-inch smart textile lighting/display system consisting of RGB fibrous LEDs coupled with multifunctional fibre devices that are capable of wireless power transmission, touch sensing, photodetection, environmental/biosignal monitoring, and energy storage. The smart textile display system exhibits full freedom of form factors, including flexibility, bendability, and rollability as a vivid RGB lighting/grey-level-controlled full colour display apparatus with embedded fibre devices that are configured to provide external stimuli detection. Our systematic design and integration strategies are transformational and provide the foundation for realising highly functional smart lighting/display textiles over large area for revolutionary applications on smart homes and internet of things (IoT).

SELECTION OF CITATIONS
SEARCH DETAIL
...