Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Sci Food Agric ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38804737

ABSTRACT

BACKGROUND: Protein hydrolysates (PHs) can enhance plant nitrogen nutrition and improve the quality of vegetables, depending on their bioactive compounds. A tomato greenhouse experiment was conducted under both optimal (14 mM) and suboptimal (2 mM) nitrogen (N-NO3) conditions. Tomatoes were treated with a new Malvaceae-derived PH (MDPH) and its molecular fractions (MDPH1, >10 kDa; MDPH2, 1-10 kDa and MDPH3, <1 kDa). RESULTS: Under optimal N conditions, the plants increased biomass and fruit yield, and showed a higher photosynthetic pigment content in leaves in comparison with suboptimal N, whereas under N-limiting conditions, an increase in dry matter, soluble solid content (SSC) and lycopene, a reduction in firmness, and changes in organic acid and phenolic compounds were observed. With 14 mM N-NO3, MDPH3 stimulated an increase in dry weight and increased yield components and lycopene in the fruit. The MDPH2 fraction also resulted in increased lycopene accumulation in fruit under 14 mM N-NO3. At a low N level, the PH fractions showed distinct effects compared with the whole MDPH and the control, with an increase in biomass for MDPH1 and MDPH2 and a higher pigment content for MDPH3. Regardless of N availability, all the fractions affected fruit quality by increasing SSC, whereas MDPH2 and MDPH3 modified organic acid content and showed a higher concentration of flavonols, lignans, and stilbenes. CONCLUSION: The molecular weight of the peptides modifies the effect of PHs on plant performance, with different behavior depending on the level of N fertilization, confirming the effectiveness of fractioning processes. © 2024 Society of Chemical Industry.

SELECTION OF CITATIONS
SEARCH DETAIL
...