Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neurobiol Dis ; 63: 92-106, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24291518

ABSTRACT

PCP4/PEP19 is a modulator of Ca(2+)-CaM signaling. In the brain, it is expressed in a very specific pattern in postmitotic neurons. In particular, Pcp4 is highly expressed in the Purkinje cell, the sole output neuron of the cerebellum. PCP4, located on human chromosome 21, is present in three copies in individuals with Down syndrome (DS). In a previous study using a transgenic mouse model (TgPCP4) to evaluate the consequences of 3 copies of this gene, we found that PCP4 overexpression induces precocious neuronal differentiation during mouse embryogenesis. Here, we report combined analyses of the cerebellum at postnatal stages (P14 and adult) in which we identified age-related molecular, electrophysiological, and behavioral alterations in the TgPCP4 mouse. While Pcp4 overexpression at P14 induces an earlier neuronal maturation, at adult stage it induces increase in cerebellar CaMK2alpha and in cerebellar LTD, as well as learning impairments. We therefore propose that PCP4 contributes significantly to the development of Down syndrome phenotypes through molecular and functional changes.


Subject(s)
Cerebellum/growth & development , Cerebellum/metabolism , Gene Expression Regulation, Developmental/physiology , Nerve Tissue Proteins/metabolism , Animals , Animals, Newborn , Cerebellum/cytology , Excitatory Amino Acid Antagonists/pharmacology , Gene Expression Regulation, Developmental/drug effects , Gene Expression Regulation, Developmental/genetics , Humans , In Vitro Techniques , Long-Term Synaptic Depression/drug effects , Long-Term Synaptic Depression/genetics , Maze Learning/drug effects , Mice , Mice, Inbred C57BL , Mice, Transgenic , Motor Activity/drug effects , Motor Activity/genetics , Nerve Tissue Proteins/genetics , Neurons/drug effects , Neurons/physiology , Psychomotor Performance/drug effects , Psychomotor Performance/physiology , Quinoxalines/pharmacology , Reaction Time/drug effects , Reaction Time/genetics , Recognition, Psychology/drug effects , Recognition, Psychology/physiology , Sodium Channel Blockers/pharmacology , Tetrodotoxin/pharmacology , Valine/analogs & derivatives , Valine/pharmacology
2.
Brain ; 136(Pt 3): 957-70, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23404338

ABSTRACT

Myotonic dystrophy type 1 is a complex multisystemic inherited disorder, which displays multiple debilitating neurological manifestations. Despite recent progress in the understanding of the molecular pathogenesis of myotonic dystrophy type 1 in skeletal muscle and heart, the pathways affected in the central nervous system are largely unknown. To address this question, we studied the only transgenic mouse line expressing CTG trinucleotide repeats in the central nervous system. These mice recreate molecular features of RNA toxicity, such as RNA foci accumulation and missplicing. They exhibit relevant behavioural and cognitive phenotypes, deficits in short-term synaptic plasticity, as well as changes in neurochemical levels. In the search for disease intermediates affected by disease mutation, a global proteomics approach revealed RAB3A upregulation and synapsin I hyperphosphorylation in the central nervous system of transgenic mice, transfected cells and post-mortem brains of patients with myotonic dystrophy type 1. These protein defects were associated with electrophysiological and behavioural deficits in mice and altered spontaneous neurosecretion in cell culture. Taking advantage of a relevant transgenic mouse of a complex human disease, we found a novel connection between physiological phenotypes and synaptic protein dysregulation, indicative of synaptic dysfunction in myotonic dystrophy type 1 brain pathology.


Subject(s)
Behavior, Animal/physiology , Myotonic Dystrophy/genetics , Myotonic Dystrophy/metabolism , Synaptic Transmission/physiology , Synaptic Vesicles/metabolism , Adult , Aged , Animals , Blotting, Western , Electrophoresis, Gel, Two-Dimensional , Electrophysiology , Humans , In Situ Hybridization, Fluorescence , Male , Mice , Mice, Transgenic , Middle Aged , Myotonic Dystrophy/complications , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Trinucleotide Repeat Expansion
3.
PLoS One ; 7(1): e29056, 2012.
Article in English | MEDLINE | ID: mdl-22253703

ABSTRACT

BACKGROUND: The cystathionine ß-synthase (CBS) gene, located on human chromosome 21q22.3, is a good candidate for playing a role in the Down Syndrome (DS) cognitive profile: it is overexpressed in the brain of individuals with DS, and it encodes a key enzyme of sulfur-containing amino acid (SAA) metabolism, a pathway important for several brain physiological processes. METHODOLOGY/PRINCIPAL FINDINGS: Here, we have studied the neural consequences of CBS overexpression in a transgenic mouse line (60.4P102D1) expressing the human CBS gene under the control of its endogenous regulatory regions. These mice displayed a ∼2-fold increase in total CBS proteins in different brain areas and a ∼1.3-fold increase in CBS activity in the cerebellum and the hippocampus. No major disturbance of SAA metabolism was observed, and the transgenic mice showed normal behavior in the rotarod and passive avoidance tests. However, we found that hippocampal synaptic plasticity is facilitated in the 60.4P102D1 line. CONCLUSION/SIGNIFICANCE: We demonstrate that CBS overexpression has functional consequences on hippocampal neuronal networks. These results shed new light on the function of the CBS gene, and raise the interesting possibility that CBS overexpression might have an advantageous effect on some cognitive functions in DS.


Subject(s)
Brain/physiology , Cystathionine beta-Synthase/metabolism , Amino Acids, Sulfur/metabolism , Animals , Behavior, Animal/physiology , Blotting, Western , Gene Dosage , Humans , Long-Term Potentiation/physiology , Metabolic Networks and Pathways , Metabolome , Mice , Mice, Transgenic , Organ Specificity , Phenotype , Synapses/metabolism , Synaptic Transmission/physiology , Transgenes/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...