Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 54(21): 13379-13388, 2020 11 03.
Article in English | MEDLINE | ID: mdl-33075225

ABSTRACT

We developed a cation-exchange membrane-based dual-channel system to measure elemental and oxidized mercury and deployed it with an automated calibration system and the University of Nevada, Reno-Reactive Mercury Active System (UNR-RMAS) at a rural/suburban field site in Colorado during the summer of 2018. Unlike oxidized mercury measurements collected via the widely used KCl denuder method, the dual-channel system was able to quantitatively recover HgCl2 and HgBr2 injected by the calibrator into the ambient sample air and compared well with the UNR-RMAS measurements. The system measured at 10 min intervals and had a 3-h average detection limit for oxidized mercury of 33 pg m-3. It was able to detect day-to-day variability and diel cycles in oxidized mercury (0 to 200 pg m-3) and will be an important tool for future studies of atmospheric mercury. We used a gravimetric method to independently determine the total mercury permeation rate from the permeation tubes. Permeation rates derived from the gravimetric method matched the permeation rates observed via mercury measurement devices to within 25% when the mercury permeation rate was relatively high (up to 30 pg s-1), but the agreement decreased for lower permeation rates, probably because of increased uncertainty in the gravimetric measurements.


Subject(s)
Air Pollutants , Mercury , Air Pollutants/analysis , Colorado , Environmental Monitoring , Mercury/analysis , Oxidation-Reduction
2.
Environ Sci Technol ; 54(13): 7922-7931, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32506903

ABSTRACT

To advance our understanding of the mercury (Hg) biogeochemical cycle, concentrations and chemistry of gaseous oxidized Hg (GOM), particulate-bound Hg (PBM), and reactive Hg (RM = GOM + PBM) need to be known. The UNR-RMAS 2.0 provides a solution that will advance knowledge. From 11/2017 to 02/2019, the RMAS 2.0 was deployed in Hawai'i, Nevada, Maryland, and Utah to test system performance and develop an understanding of RM at locations impacted by different atmospheric oxidants. Mauna Loa Observatory, Hawai'i, impacted by the free troposphere and the marine boundary layer, had primarily -Br/Cl RM compounds. The Nevada location, directly adjacent to a major interstate highway and experiences inputs from the free troposphere, exhibited -Br/Cl, -N, -S, and organic compounds. In Maryland, compounds observed were -N, -S, and organic-Hg. This site is downwind of coal-fired power plants and located in a forested area. The location in Utah is in a basin impacted by oil and natural gas extraction, multiday wintertime inversion episodes, and inputs from the free troposphere. Compounds were -Br/Cl or -O, -N, and -Br/Cl. The chemical forms of RM identified were consistent with the air source areas, predominant ion chemistry, criterion air pollutants, and meteorology.


Subject(s)
Air Pollutants , Mercury , Air Pollutants/analysis , Environmental Monitoring , Maryland , Mercury/analysis , Nevada , Utah
SELECTION OF CITATIONS
SEARCH DETAIL
...