Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 144(33): 15303-15313, 2022 08 24.
Article in English | MEDLINE | ID: mdl-35945166

ABSTRACT

The use of antibiotics is threatened by the emergence and spread of multidrug-resistant strains of bacteria. Thus, there is a need to develop antibiotics that address new targets. In this respect, the bacterial divisome, a multi-protein complex central to cell division, represents a potentially attractive target. Of particular interest is the FtsQB subcomplex that plays a decisive role in divisome assembly and peptidoglycan biogenesis in E. coli. Here, we report the structure-based design of a macrocyclic covalent inhibitor derived from a periplasmic region of FtsB that mediates its binding to FtsQ. The bioactive conformation of this motif was stabilized by a customized cross-link resulting in a tertiary structure mimetic with increased affinity for FtsQ. To increase activity, a covalent handle was incorporated, providing an inhibitor that impedes the interaction between FtsQ and FtsB irreversibly. The covalent inhibitor reduced the growth of an outer membrane-permeable E. coli strain, concurrent with the expected loss of FtsB localization, and also affected the infection of zebrafish larvae by a clinical E. coli strain. This first-in-class inhibitor of a divisome protein-protein interaction highlights the potential of proteomimetic molecules as inhibitors of challenging targets. In particular, the covalent mode-of-action can serve as an inspiration for future antibiotics that target protein-protein interactions.


Subject(s)
Escherichia coli Proteins , Animals , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Cell Cycle Proteins/chemistry , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Membrane Proteins/chemistry , Zebrafish/metabolism
2.
Chembiochem ; 21(10): 1461-1472, 2020 05 15.
Article in English | MEDLINE | ID: mdl-31919943

ABSTRACT

The regio- (and stereo-)selectivity and specific activity of cytochrome P450s are determined by the accessibility of potential sites of metabolism (SOMs) of the bound substrate relative to the heme, and the activation barrier of the regioselective oxidation reaction(s). The accessibility of potential SOMs depends on the relative binding free energy (ΔΔGbind ) of the catalytically active substrate-binding poses, and the probability of the substrate to adopt a transition-state geometry. An established experimental method to measure activation energies of enzymatic reactions is the analysis of reaction rate constants at different temperatures and the construction of Arrhenius plots. This is a challenge for multistep P450-catalyzed processes that involve redox partners. We introduce a modified Arrhenius approach to overcome the limitations in studying P450 selectivity, which can be applied in multiproduct enzyme catalysis. Our approach gives combined information on relative activation energies, ΔΔGbind values, and collision entropies, yielding direct insight into the basis of selectivity in substrate conversion.


Subject(s)
Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/metabolism , Heme/metabolism , Mefenamic Acid/metabolism , Binding Sites , Catalysis , Hydroxylation , Molecular Dynamics Simulation , Oxidation-Reduction , Protein Binding , Substrate Specificity , Thermodynamics
3.
Molecules ; 24(24)2019 Dec 04.
Article in English | MEDLINE | ID: mdl-31817278

ABSTRACT

The c-Met receptor is a therapeutically actionable target in non-small-cell lung cancer (NSCLC), with one approved drug and several agents in development. Most suitable biomarkers for patient selection include c-Met amplification and exon-14 skipping. Our retrospective study focused on the frequency of different c-Met aberrations (overexpression, amplification and mutations) in 153 primary, therapy-naïve resection samples and their paired metastases, from Biobank@UZA. Furthermore, we determined the correlation of c-Met expression with clinicopathological factors, Epidermal Growth Factor Receptor (EGFR)-status and TP53 mutations. Our results showed that c-Met expression levels in primary tumors were comparable to their respective metastases. Five different mutations were detected by deep sequencing: three (E168D, S203T, N375S) previously described and two never reported (I333T, G783E). I333T, a new mutation in the Sema(phorin) domain of c-Met, might influence the binding of antibodies targeting the HGF-binding domain, potentially causing innate resistance. E168D and S203T mutations showed a trend towards a correlation with high c-Met expression (p = 0.058). We found a significant correlation between c-MET expression, EGFR expression (p = 0.010) and EGFR mutations (p = 0.013), as well as a trend (p = 0.057) with regards to TP53 mutant activity. In conclusion this study demonstrated a strong correlation between EGFR mutations, TP53 and c-Met expression in therapy-naïve primary resection samples. Moreover, we found two new c-Met mutations that warrant further studies.


Subject(s)
Biomarkers, Tumor/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Drug Resistance, Neoplasm/genetics , Lung Neoplasms/genetics , Mutation/genetics , Proto-Oncogene Proteins c-met/genetics , Adult , Aged , ErbB Receptors/genetics , Female , Gene Amplification , Gene Expression Regulation, Neoplastic , Humans , Male , Middle Aged , Neoplasm Metastasis , Tumor Suppressor Protein p53/genetics
4.
mBio ; 9(5)2018 09 11.
Article in English | MEDLINE | ID: mdl-30206170

ABSTRACT

Most bacteria and archaea use the tubulin homologue FtsZ as its central organizer of cell division. In Gram-negative Escherichia coli bacteria, FtsZ recruits cytosolic, transmembrane, periplasmic, and outer membrane proteins, assembling the divisome that facilitates bacterial cell division. One such divisome component, FtsQ, a bitopic membrane protein with a globular domain in the periplasm, has been shown to interact with many other divisome proteins. Despite its otherwise unknown function, it has been shown to be a major divisome interaction hub. Here, we investigated the interactions of FtsQ with FtsB and FtsL, two small bitopic membrane proteins that act immediately downstream of FtsQ. We show in biochemical assays that the periplasmic domains of E. coli FtsB and FtsL interact with FtsQ, but not with each other. Our crystal structure of FtsB bound to the ß domain of FtsQ shows that only residues 64 to 87 of FtsB interact with FtsQ. A synthetic peptide comprising those 24 FtsB residues recapitulates the FtsQ-FtsB interactions. Protein deletions and structure-guided mutant analyses validate the structure. Furthermore, the same structure-guided mutants show cell division defects in vivo that are consistent with our structure of the FtsQ-FtsB complex that shows their interactions as they occur during cell division. Our work provides intricate details of the interactions within the divisome and also provides a tantalizing view of a highly conserved protein interaction in the periplasm of bacteria that is an excellent target for cell division inhibitor searches.IMPORTANCE In most bacteria and archaea, filaments of FtsZ protein organize cell division. FtsZ forms a ring structure at the division site and starts the recruitment of 10 to 20 downstream proteins that together form a multiprotein complex termed the divisome. The divisome is thought to facilitate many of the steps required to make two cells out of one. FtsQ and FtsB are part of the divisome, with FtsQ being a central hub, interacting with most of the other divisome components. Here we show for the first time in detail how FtsQ interacts with its downstream partner FtsB and show that mutations that disturb the interface between the two proteins effectively inhibit cell division.


Subject(s)
Cell Cycle Proteins/chemistry , Cell Cycle Proteins/metabolism , Cell Division , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Escherichia coli/physiology , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Cell Cycle Proteins/genetics , Crystallography, X-Ray , DNA Mutational Analysis , Escherichia coli Proteins/genetics , Gene Deletion , Membrane Proteins/genetics , Protein Binding , Protein Conformation , Protein Domains , Protein Interaction Mapping
5.
J Inorg Biochem ; 184: 115-122, 2018 07.
Article in English | MEDLINE | ID: mdl-29723739

ABSTRACT

The 5'-hydroxymethyl metabolite of the penicillin based antibiotic flucloxacillin (FLX) is considered to be involved in bile duct damage occurring in a small number of patients. Because 5'-hydroxymethyl FLX is difficult to obtain by organic synthesis, biosynthesis using highly active and regioselective biocatalysts would be an alternative approach. By screening an in-house library of Cytochrome P450 (CYP) BM3 mutants, mutant M11 L437E was identified as a regioselective enzyme with relatively high activity in production of 5'-hydroxymethyl FLX as was confirmed by mass spectrometry and NMR. In contrast, incubation of M11 L437E and other mutants with oxacillin (OX, which differs from FLX by a lack of aromatic halogens) resulted in formation of two metabolites. In addition to 5'-hydroxymethyl OX we identified a product resulting from aromatic hydroxylation. In silico studies of both FLX and OX with three CYP BM3 mutants revealed substrate binding poses allowing for 5'-methyl hydroxylation, as well as binding poses with the aromatic moiety in the vicinity of the heme iron for which the corresponding product of aromatic hydroxylation was not observed for FLX. Supported by the (differences in) experimentally determined ratios of product formation for OX hydroxylation by M11 and its L437A variant and M11 L437E, Molecular Dynamics simulations suggest that the preference of mutant M11 L437E to bind FLX in its catalytically active pose over the other binding orientation contributes to its biocatalytic activity, highlighting the benefit of studying effects of active-site mutations on possible alternative enzyme-substrate binding poses in protein engineering.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Floxacillin/chemistry , Floxacillin/metabolism , Catalytic Domain , Hydroxylation , Magnetic Resonance Spectroscopy , Mass Spectrometry , Molecular Dynamics Simulation , Substrate Specificity
6.
J Inorg Biochem ; 180: 47-53, 2018 03.
Article in English | MEDLINE | ID: mdl-29232638

ABSTRACT

CYP130 belongs to the subset of cytochrome P450s from Mycobacterium tuberculosis (Mtb) that have been structurally characterized. Despite several efforts for its functional characterization, CYP130 is still considered an orphan enzyme for which no endogenous or exogenous substrate has been identified. In addition, functional redox-partners for CYP130 have not been clearly established yet, hampering the elucidation of its physiological role. In the present study, a catalytically active fusion protein involving CYP130 and the NADPH reductase-domain of CYP102A1 from Bacillus megaterium was created. By screening a panel of known substrates of human P450s, dextromethorphan N-demethylation was identified as a reaction catalyzed by CYP130. The fusion enzyme showed higher catalytic activity, when compared to CYP130 reconstituted with a selection of non-native redox-partners. Molecular dynamics simulation studies based on the crystal structure of CYP130 revealed two primary docking poses of dextromethorphan within the active site consistent with the experimentally observed N-demethylation reaction during the entire molecular dynamics simulation. The dextromethorphan N-demethylation reaction was strongly inhibited by azole-drugs and maybe applied to identify mechanism-based inhibitors of CYP130. Furthermore, the present active CYP130-fusion protein may facilitate the identification of endogenous substrates from Mtb.


Subject(s)
Bacillus megaterium/enzymology , Cytochrome P-450 Enzyme System/genetics , Gene Fusion , Mycobacterium tuberculosis/enzymology , Bacillus megaterium/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Catalysis , Cloning, Molecular , Cytochrome P-450 Enzyme System/isolation & purification , Cytochrome P-450 Enzyme System/metabolism , Dextromethorphan/metabolism , Humans , Inhibitory Concentration 50 , Kinetics , Methylation , Molecular Docking Simulation , Molecular Dynamics Simulation , Mycobacterium tuberculosis/genetics , NADPH-Ferrihemoprotein Reductase/genetics , Oxidation-Reduction , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Substrate Specificity
7.
J Comput Chem ; 38(8): 508-517, 2017 03 30.
Article in English | MEDLINE | ID: mdl-28133840

ABSTRACT

In this work, parameters are optimized for a charge-on-spring based polarizable force field for linear alcohols. We show that parameter transferability can be obtained using a systematic approach in which the effects of parameter changes on physico-chemical properties calculated from simulation are predicted. Our previously described QM/MM calculations are used to attribute condensed-phase polarizabilities, and starting from the non-polarizable GROMOS 53A5/53A6 parameter set, van der Waals and Coulomb interaction parameters are optimized to reproduce pure-liquid (thermodynamic, dielectric, and transport) properties, as well as hydration free energies. For a large set of models, which were obtained by combining small perturbations of 10 distinct parameters, values for pure-liquid properties of the series methanol to butanol were close to experiment. From this large set of models, we selected 34 models without special repulsive van der Waals parameters to distinguish between hydrogen-bonding and non-hydrogen-bonding atom pairs, to make the force field simple and transparent. © 2017 Wiley Periodicals, Inc.

SELECTION OF CITATIONS
SEARCH DETAIL
...